RBKltTracker

class RBKltTracker(self)

Bases: RBFeatureTracker

Methods

__init__

computeVVSIter

display

extractFeatures

getFilteringBorderSize

getFilteringMaxReprojectionError

getKltTracker

getMinimumDistanceNewPoints

getMinimumMaskConfidence

getMinimumNumberOfPoints

initVVS

loadJsonConfiguration

Overloaded function.

onTrackingIterEnd

onTrackingIterStart

requiresDepth

requiresRGB

requiresSilhouetteCandidates

setFilteringBorderSize

setFilteringMaxReprojectionError

setMinimumDistanceNewPoints

setMinimumMaskConfidence

setMinimumNumberOfPoints

setShouldUseMask

shouldUseMask

trackFeatures

Inherited Methods

getLTR

Get the right-side term of the Gauss-Newton optimization term.

featuresShouldBeDisplayed

setTrackerWeight

L

LTR

computeCovarianceMatrix

weights

covWeightDiag

getNumFeatures

Return the type of feature that is used by this tracker.

getWeightedError

Get a weighted version of the error vector.

vvsHasConverged

Returns whether the tracker is considered as having converged to the desired pose.

userVvsWeight

getCovariance

Retrieve the 6 x 6 pose covariance matrix, computed from the weights associated to each feature.

computeJTR

getLTL

Get the left-side term of the Gauss-Newton optimization term.

numFeatures

vvsConverged

LTL

enableDisplay

weighted_error

updateCovariance

Update the covariance matrix.

cov

error

setFeaturesShouldBeDisplayed

getVVSTrackerWeight

Get the importance of this tracker in the optimization step.

Operators

__doc__

__init__

__module__

Attributes

L

LTL

LTR

__annotations__

cov

covWeightDiag

enableDisplay

error

numFeatures

userVvsWeight

vvsConverged

weighted_error

weights

__init__(self)
static computeCovarianceMatrix(A: visp._visp.core.Matrix, b: visp._visp.core.ColVector, W: visp._visp.core.Matrix) visp._visp.core.Matrix
static computeJTR(interaction: visp._visp.core.Matrix, error: visp._visp.core.ColVector, JTR: visp._visp.core.ColVector) None
computeVVSIter(self, frame: visp._visp.rbt.RBFeatureTrackerInput, cMo: visp._visp.core.HomogeneousMatrix, iteration: int) None
display(self, cam: visp._visp.core.CameraParameters, I: visp._visp.core.ImageGray, IRGB: visp._visp.core.ImageRGBa, depth: visp._visp.core.ImageGray) None
extractFeatures(self, frame: visp._visp.rbt.RBFeatureTrackerInput, previousFrame: visp._visp.rbt.RBFeatureTrackerInput, cMo: visp._visp.core.HomogeneousMatrix) None
featuresShouldBeDisplayed(self) bool
getCovariance(self) visp._visp.core.Matrix

Retrieve the 6 x 6 pose covariance matrix, computed from the weights associated to each feature.

The updateCovariance method should have been called before

getFilteringBorderSize(self) int
getFilteringMaxReprojectionError(self) float
getKltTracker(self) visp._visp.klt.KltOpencv
getLTL(self) visp._visp.core.Matrix

Get the left-side term of the Gauss-Newton optimization term.

getLTR(self) visp._visp.core.ColVector

Get the right-side term of the Gauss-Newton optimization term.

getMinimumDistanceNewPoints(self) float
getMinimumMaskConfidence(self) float
getMinimumNumberOfPoints(self) int
getNumFeatures(self) int

Return the type of feature that is used by this tracker.

Get the number of features used to compute the pose update

Returns:

vpRBFeatureType

getVVSTrackerWeight(self) float

Get the importance of this tracker in the optimization step. The default computation is the following: \(w / N\) , where \(w\) is the weight defined by setTrackerWeight, and \(N\) is the number of features.

getWeightedError(self) visp._visp.core.ColVector

Get a weighted version of the error vector. This should not include the userVVSWeight, but may include reweighting to remove outliers, occlusions, etc.

initVVS(self, frame: visp._visp.rbt.RBFeatureTrackerInput, previousFrame: visp._visp.rbt.RBFeatureTrackerInput, cMo: visp._visp.core.HomogeneousMatrix) None
loadJsonConfiguration(*args, **kwargs)

Overloaded function.

  1. loadJsonConfiguration(self: visp._visp.rbt.RBKltTracker, j: nlohmann::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long, unsigned long, double, std::allocator, nlohmann::adl_serializer, std::vector<unsigned char, std::allocator<unsigned char> > >) -> None

  2. loadJsonConfiguration(self: visp._visp.rbt.RBFeatureTracker, j: nlohmann::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long, unsigned long, double, std::allocator, nlohmann::adl_serializer, std::vector<unsigned char, std::allocator<unsigned char> > >) -> None

onTrackingIterEnd(self) None
onTrackingIterStart(self) None
requiresDepth(self) bool
requiresRGB(self) bool
requiresSilhouetteCandidates(self) bool
setFeaturesShouldBeDisplayed(self, enableDisplay: bool) None
setFilteringBorderSize(self, border: int) None
setFilteringMaxReprojectionError(self, maxError: float) None
setMinimumDistanceNewPoints(self, distance: float) None
setMinimumMaskConfidence(self, confidence: float) None
setMinimumNumberOfPoints(self, points: int) None
setShouldUseMask(self, useMask: bool) None
setTrackerWeight(self, weight: float) None
shouldUseMask(self) bool
trackFeatures(self, frame: visp._visp.rbt.RBFeatureTrackerInput, previousFrame: visp._visp.rbt.RBFeatureTrackerInput, cMo: visp._visp.core.HomogeneousMatrix) None
updateCovariance(self: visp._visp.rbt.RBFeatureTracker, lambda: float) None

Update the covariance matrix.

Parameters:
lambda

the visual servoing gain

vvsHasConverged(self) bool

Returns whether the tracker is considered as having converged to the desired pose.