RBKltTracker¶
- class RBKltTracker(self)¶
Bases:
RBFeatureTracker
Methods
Overloaded function.
Inherited Methods
Get the right-side term of the Gauss-Newton optimization term.
L
LTR
weights
covWeightDiag
Return the type of feature that is used by this tracker.
Get a weighted version of the error vector.
Returns whether the tracker is considered as having converged to the desired pose.
userVvsWeight
Retrieve the 6 x 6 pose covariance matrix, computed from the weights associated to each feature.
Get the left-side term of the Gauss-Newton optimization term.
numFeatures
vvsConverged
LTL
enableDisplay
weighted_error
Update the covariance matrix.
cov
error
Get the importance of this tracker in the optimization step.
Operators
__doc__
__module__
Attributes
L
LTL
LTR
__annotations__
cov
covWeightDiag
enableDisplay
error
numFeatures
userVvsWeight
vvsConverged
weighted_error
weights
- __init__(self)¶
- static computeCovarianceMatrix(A: visp._visp.core.Matrix, b: visp._visp.core.ColVector, W: visp._visp.core.Matrix) visp._visp.core.Matrix ¶
- static computeJTR(interaction: visp._visp.core.Matrix, error: visp._visp.core.ColVector, JTR: visp._visp.core.ColVector) None ¶
- computeVVSIter(self, frame: visp._visp.rbt.RBFeatureTrackerInput, cMo: visp._visp.core.HomogeneousMatrix, iteration: int) None ¶
- display(self, cam: visp._visp.core.CameraParameters, I: visp._visp.core.ImageGray, IRGB: visp._visp.core.ImageRGBa, depth: visp._visp.core.ImageGray) None ¶
- extractFeatures(self, frame: visp._visp.rbt.RBFeatureTrackerInput, previousFrame: visp._visp.rbt.RBFeatureTrackerInput, cMo: visp._visp.core.HomogeneousMatrix) None ¶
- getCovariance(self) visp._visp.core.Matrix ¶
Retrieve the 6 x 6 pose covariance matrix, computed from the weights associated to each feature.
The updateCovariance method should have been called before
- getKltTracker(self) visp._visp.klt.KltOpencv ¶
- getLTL(self) visp._visp.core.Matrix ¶
Get the left-side term of the Gauss-Newton optimization term.
- getLTR(self) visp._visp.core.ColVector ¶
Get the right-side term of the Gauss-Newton optimization term.
- getNumFeatures(self) int ¶
Return the type of feature that is used by this tracker.
Get the number of features used to compute the pose update
- Returns:
vpRBFeatureType
- getVVSTrackerWeight(self) float ¶
Get the importance of this tracker in the optimization step. The default computation is the following: \(w / N\) , where \(w\) is the weight defined by setTrackerWeight, and \(N\) is the number of features.
- getWeightedError(self) visp._visp.core.ColVector ¶
Get a weighted version of the error vector. This should not include the userVVSWeight, but may include reweighting to remove outliers, occlusions, etc.
- initVVS(self, frame: visp._visp.rbt.RBFeatureTrackerInput, previousFrame: visp._visp.rbt.RBFeatureTrackerInput, cMo: visp._visp.core.HomogeneousMatrix) None ¶
- loadJsonConfiguration(*args, **kwargs)¶
Overloaded function.
loadJsonConfiguration(self: visp._visp.rbt.RBKltTracker, j: nlohmann::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long, unsigned long, double, std::allocator, nlohmann::adl_serializer, std::vector<unsigned char, std::allocator<unsigned char> > >) -> None
loadJsonConfiguration(self: visp._visp.rbt.RBFeatureTracker, j: nlohmann::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long, unsigned long, double, std::allocator, nlohmann::adl_serializer, std::vector<unsigned char, std::allocator<unsigned char> > >) -> None
- trackFeatures(self, frame: visp._visp.rbt.RBFeatureTrackerInput, previousFrame: visp._visp.rbt.RBFeatureTrackerInput, cMo: visp._visp.core.HomogeneousMatrix) None ¶