RzyxVector

class RzyxVector(*args, **kwargs)

Bases: RotationVector

Implementation of a rotation vector as \(R(z,y,x)\) Euler angle minimal representation.

Class that consider the case of the Euler \((\varphi,\theta,\psi)\) angle using the z-y-x convention, where \((\varphi,\theta,\psi)\) are respectively the rotation angles around the \(z\) , \(y\) and \(x\) axis.

\[R_{zyx}(\varphi,\theta,\psi) = R_z(\varphi) \; R_y(\theta) \; R_x(\psi)\]

with

\[\begin{split}R_{z}(\varphi) = \left( \begin{array}{ccc} \cos \varphi & -\sin\varphi & 0\\\sin\varphi &\cos \varphi& 0 \\0 & 0 & 1 \end{array} \right) \; R_{y}(\theta) = \left( \begin{array}{ccc} \cos \theta & 0 & \sin\theta\\0 & 1 & 0 \\-\sin\theta & 0 &\cos \theta \end{array} \right) \; R_{x}(\psi) = \left( \begin{array}{ccc} 1 & 0 & 0 \\0 &\cos \psi & -\sin\psi \\0 &\sin \psi & \cos\psi \\\end{array} \right) \end{split}\]

The rotation matrix corresponding to the z-y-x convention is given by:

\[\begin{split}R_{zyx}(\varphi,\theta,\psi) = \left( \begin{array}{ccc} \cos\varphi \cos\theta & -\sin\varphi \cos\psi + \cos\varphi\sin\theta\sin\psi & \sin\varphi \sin\psi +\cos\varphi\sin\theta\cos\psi \\\sin\varphi \cos\theta & \cos\varphi\cos\psi + \sin\varphi\sin\theta \sin\psi & -\cos\varphi \sin\psi +\sin\varphi\sin\theta\cos\psi \\-\sin\theta & \cos\theta \sin\psi & \cos\theta \cos\psi \end{array} \right) \end{split}\]

The vpRzyxVector class is derived from vpRotationVector .

From the implementation point of view, it is nothing more than an array of three doubles with values in [rad].

You can set values [rad] accessing each element:

vpRzyxVector rzyx;
rzyx[0] = M_PI_4;
rzyx[1] = M_PI_2;
rzyx[2] = M_PI;

You can also initialize the vector using operator<<(double) :

rzyx << M_PI_4, M_PI_2, M_PI;

Or you can also initialize the vector from a list of doubles if ViSP is build with c++11 enabled:

rzyx = {M_PI_4, M_PI_2, M_PI};

To get the values [rad] use:

double rz = rzyx[0];
double ry = rzyx[1];
double rx = rzyx[2];

The code below shows first how to initialize this representation of Euler angles, than how to construct a rotation matrix from a vpRzyxVector and finally how to extract the vpRzyxVector Euler angles from the build rotation matrix.

#include <visp3/core/vpMath.h>
#include <visp3/core/vpRotationMatrix.h>
#include <visp3/core/vpRzyxVector.h>

#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif

int main()
{
  vpRzyxVector rzyx;

  // Initialise the Euler angles
  rzyx[0] = vpMath::rad( 45.f); // phi   angle in rad/s around z axis
  rzyx[1] = vpMath::rad(-30.f); // theta angle in rad/s around y axis
  rzyx[2] = vpMath::rad( 90.f); // psi   angle in rad/s around x axis

  // Construct a rotation matrix from the Euler angles
  vpRotationMatrix R(rzyx);

  // Extract the Euler angles around z,y,x axis from a rotation matrix
  rzyx.buildFrom(R);

  // Print the extracted Euler angles. Values are the same than the
  // one used for initialization
  std::cout << rzyx;

  // Since the rotation vector is 3 values column vector, the
  // transpose operation produce a row vector.
  vpRowVector rzyx_t = rzyx.t();

  // Print the transpose row vector
  std::cout << rzyx_t << std::endl;
}

Overloaded function.

  1. __init__(self: visp._visp.core.RzyxVector) -> None

Default constructor that initialize all the 3 angles to zero.

  1. __init__(self: visp._visp.core.RzyxVector, rzyx: visp._visp.core.RzyxVector) -> None

Copy constructor.

  1. __init__(self: visp._visp.core.RzyxVector, phi: float, theta: float, psi: float) -> None

Constructor from 3 angles (in radian).

Parameters:
phi

math:varphi angle around the \(z\) axis.

theta

math:theta angle around the \(y\) axis.

psi

math:psi angle around the \(x\) axis.

  1. __init__(self: visp._visp.core.RzyxVector, R: visp._visp.core.RotationMatrix) -> None

  2. __init__(self: visp._visp.core.RzyxVector, tu: visp._visp.core.ThetaUVector) -> None

  3. __init__(self: visp._visp.core.RzyxVector, rzyx: visp._visp.core.ColVector) -> None

  4. __init__(self: visp._visp.core.RzyxVector, rzyx: list[float]) -> None

Methods

__init__

Overloaded function.

buildFrom

Overloaded function.

Inherited Methods

sumSquare

Return the sum square of all the elements \(r_{i}\) of the rotation vector r(m).

save

Overloaded function.

conv2

Overloaded function.

reshape

toStdVector

return:

The corresponding std::vector<double>.

resize

Set the size of the array and initialize all the values to zero.

hadamard

param m:

Second matrix;

getCols

Return the number of columns of the 2D array.

numpy

Numpy view of the underlying array data.

insert

Overloaded function.

t

Overloaded function.

size

Return the number of elements of the 2D array.

getMinValue

Return the array min value.

insertStatic

Insert array B in array A at the given position.

saveYAML

Save an array in a YAML-formatted file.

getMaxValue

Return the array max value.

getRows

Return the number of rows of the 2D array.

Operators

__doc__

__init__

Overloaded function.

__module__

Attributes

__annotations__

__hash__

__eq__(*args, **kwargs)

Overloaded function.

  1. __eq__(self: visp._visp.core.ArrayDouble2D, A: visp._visp.core.ArrayDouble2D) -> bool

Equal to comparison operator of a 2D array.

  1. __eq__(self: visp._visp.core.ArrayDouble2D, A: visp._visp.core.ArrayDouble2D) -> bool

Equal to comparison operator of a 2D array.

  1. __eq__(self: visp._visp.core.ArrayDouble2D, A: visp._visp.core.ArrayDouble2D) -> bool

Equal to comparison operator of a 2D array.

__getitem__(*args, **kwargs)

Overloaded function.

  1. __getitem__(self: visp._visp.core.ArrayDouble2D, arg0: tuple[int, int]) -> float

  2. __getitem__(self: visp._visp.core.ArrayDouble2D, arg0: int) -> numpy.ndarray[numpy.float64]

  3. __getitem__(self: visp._visp.core.ArrayDouble2D, arg0: slice) -> numpy.ndarray[numpy.float64]

  4. __getitem__(self: visp._visp.core.ArrayDouble2D, arg0: tuple) -> numpy.ndarray[numpy.float64]

__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: visp._visp.core.RzyxVector) -> None

Default constructor that initialize all the 3 angles to zero.

  1. __init__(self: visp._visp.core.RzyxVector, rzyx: visp._visp.core.RzyxVector) -> None

Copy constructor.

  1. __init__(self: visp._visp.core.RzyxVector, phi: float, theta: float, psi: float) -> None

Constructor from 3 angles (in radian).

Parameters:
phi

math:varphi angle around the \(z\) axis.

theta

math:theta angle around the \(y\) axis.

psi

math:psi angle around the \(x\) axis.

  1. __init__(self: visp._visp.core.RzyxVector, R: visp._visp.core.RotationMatrix) -> None

  2. __init__(self: visp._visp.core.RzyxVector, tu: visp._visp.core.ThetaUVector) -> None

  3. __init__(self: visp._visp.core.RzyxVector, rzyx: visp._visp.core.ColVector) -> None

  4. __init__(self: visp._visp.core.RzyxVector, rzyx: list[float]) -> None

__mul__(*args, **kwargs)

Overloaded function.

  1. __mul__(self: visp._visp.core.RotationVector, x: float) -> visp._visp.core.ColVector

Operator that allows to multiply each element of a rotation vector by a scalar.

Parameters:
x

The scalar.

Returns:

The rotation vector multiplied by the scalar as a column vector. The current rotation vector (*this) is unchanged.

  1. __mul__(self: visp._visp.core.RotationVector, x: float) -> visp._visp.core.ColVector

Operator that allows to multiply each element of a rotation vector by a scalar.

Parameters:
x

The scalar.

Returns:

The rotation vector multiplied by the scalar as a column vector. The current rotation vector (*this) is unchanged.

  1. __mul__(self: visp._visp.core.RotationVector, x: float) -> visp._visp.core.ColVector

Operator that allows to multiply each element of a rotation vector by a scalar.

Parameters:
x

The scalar.

Returns:

The rotation vector multiplied by the scalar as a column vector. The current rotation vector (*this) is unchanged.

__ne__(*args, **kwargs)

Overloaded function.

  1. __ne__(self: visp._visp.core.ArrayDouble2D, A: visp._visp.core.ArrayDouble2D) -> bool

Not equal to comparison operator of a 2D array.

  1. __ne__(self: visp._visp.core.ArrayDouble2D, A: visp._visp.core.ArrayDouble2D) -> bool

Not equal to comparison operator of a 2D array.

  1. __ne__(self: visp._visp.core.ArrayDouble2D, A: visp._visp.core.ArrayDouble2D) -> bool

Not equal to comparison operator of a 2D array.

buildFrom(*args, **kwargs)

Overloaded function.

  1. buildFrom(self: visp._visp.core.RzyxVector, R: visp._visp.core.RotationMatrix) -> visp._visp.core.RzyxVector

Convert a rotation matrix into a \(R_{zyx}=(\varphi,\theta,\psi)\) Euler angles vector.

Source: R. Paul, Robot Manipulators: Mathematics, Programming, and Control. MIT Press, 1981, p. 71

Parameters:
R

Rotation matrix used as input.

Returns:

\(R_{zyx}=(\varphi,\theta,\psi)\) Euler angles vector.

  1. buildFrom(self: visp._visp.core.RzyxVector, R: visp._visp.core.ThetaUVector) -> visp._visp.core.RzyxVector

Returns:

\(R_{zyx}=(\varphi,\theta,\psi)\) Euler angles vector.

  1. buildFrom(self: visp._visp.core.RzyxVector, rxyz: visp._visp.core.ColVector) -> visp._visp.core.RzyxVector

Construct a \(R_{zyx}=(\varphi,\theta,\psi)\) Euler angles vector from a 3-dim vector.

  1. buildFrom(self: visp._visp.core.RzyxVector, rxyz: list[float]) -> visp._visp.core.RzyxVector

Construct a \(R_{zyx}=(\varphi,\theta,\psi)\) Euler angles vector from a 3-dim vector.

  1. buildFrom(self: visp._visp.core.RzyxVector, phi: float, theta: float, psi: float) -> visp._visp.core.RzyxVector

Construction from 3 angles (in radian).

Parameters:
phi

math:varphi angle around the \(z\) axis.

theta

math:theta angle around the \(y\) axis.

psi

math:psi angle around the \(x\) axis.

static conv2(*args, **kwargs)

Overloaded function.

  1. conv2(M: visp._visp.core.ArrayDouble2D, kernel: visp._visp.core.ArrayDouble2D, mode: str) -> visp._visp.core.ArrayDouble2D

Perform a 2D convolution similar to Matlab conv2 function: \(M \star kernel\) .

<unparsed image <doxmlparser.compound.docImageType object at 0x7fe94ac499f0>>

Note

This is a very basic implementation that does not use FFT.

Parameters:
M

First matrix.

kernel

Second matrix.

mode

Convolution mode: “full” (default), “same”, “valid”.

  1. conv2(M: visp._visp.core.ArrayDouble2D, kernel: visp._visp.core.ArrayDouble2D, res: visp._visp.core.ArrayDouble2D, mode: str) -> None

Perform a 2D convolution similar to Matlab conv2 function: \(M \star kernel\) .

<unparsed image <doxmlparser.compound.docImageType object at 0x7fe94ac4b610>>

Note

This is a very basic implementation that does not use FFT.

Parameters:
M

First array.

kernel

Second array.

res

Result.

mode

Convolution mode: “full” (default), “same”, “valid”.

  1. conv2(M: visp._visp.core.ArrayDouble2D, kernel: visp._visp.core.ArrayDouble2D, mode: str) -> visp._visp.core.ArrayDouble2D

Perform a 2D convolution similar to Matlab conv2 function: \(M \star kernel\) .

<unparsed image <doxmlparser.compound.docImageType object at 0x7fe94ac499f0>>

Note

This is a very basic implementation that does not use FFT.

Parameters:
M

First matrix.

kernel

Second matrix.

mode

Convolution mode: “full” (default), “same”, “valid”.

  1. conv2(M: visp._visp.core.ArrayDouble2D, kernel: visp._visp.core.ArrayDouble2D, res: visp._visp.core.ArrayDouble2D, mode: str) -> None

Perform a 2D convolution similar to Matlab conv2 function: \(M \star kernel\) .

<unparsed image <doxmlparser.compound.docImageType object at 0x7fe94ac4b610>>

Note

This is a very basic implementation that does not use FFT.

Parameters:
M

First array.

kernel

Second array.

res

Result.

mode

Convolution mode: “full” (default), “same”, “valid”.

getCols(self) int

Return the number of columns of the 2D array.

Note

See getRows() , size()

getMaxValue(self) float

Return the array max value.

getMinValue(self) float

Return the array min value.

getRows(self) int

Return the number of rows of the 2D array.

Note

See getCols() , size()

hadamard(self, m: visp._visp.core.ArrayDouble2D) visp._visp.core.ArrayDouble2D
Parameters:
m: visp._visp.core.ArrayDouble2D

Second matrix;

Returns:

m1.hadamard(m2) The Hadamard product : \(m1 \circ m2 = (m1 \circ m2)_{i,j} = (m1)_{i,j} (m2)_{i,j}\)

insert(*args, **kwargs)

Overloaded function.

  1. insert(self: visp._visp.core.ArrayDouble2D, A: visp._visp.core.ArrayDouble2D, r: int, c: int) -> None

Insert array A at the given position in the current array.

Warning

Throw vpException::dimensionError if the dimensions of the matrices do not allow the operation.

Parameters:
A

The array to insert.

r

The index of the row to begin to insert data.

c

The index of the column to begin to insert data.

  1. insert(self: visp._visp.core.ArrayDouble2D, A: visp._visp.core.ArrayDouble2D, B: visp._visp.core.ArrayDouble2D, r: int, c: int) -> visp._visp.core.ArrayDouble2D

Insert array B in array A at the given position.

Warning

Throw exception if the sizes of the arrays do not allow the insertion.

Parameters:
A

Main array.

B

Array to insert.

r

Index of the row where to add the array.

c

Index of the column where to add the array.

Returns:

Array with B insert in A.

static insertStatic(A: visp._visp.core.ArrayDouble2D, B: visp._visp.core.ArrayDouble2D, C: visp._visp.core.ArrayDouble2D, r: int, c: int) None

Insert array B in array A at the given position.

Warning

Throw exception if the sizes of the arrays do not allow the insertion.

Parameters:
A: visp._visp.core.ArrayDouble2D

Main array.

B: visp._visp.core.ArrayDouble2D

Array to insert.

C: visp._visp.core.ArrayDouble2D

Result array.

r: int

Index of the row where to insert array B.

c: int

Index of the column where to insert array B.

numpy(self) numpy.ndarray[numpy.float64]

Numpy view of the underlying array data. This numpy view can be used to directly modify the array.

reshape(self, nrows: int, ncols: int) None
resize(self, nrows: int, ncols: int, flagNullify: bool = true, recopy_: bool = true) None

Set the size of the array and initialize all the values to zero.

Parameters:
nrows: int

number of rows.

ncols: int

number of column.

flagNullify: bool = true

if true, then the array is re-initialized to 0 after resize. If false, the initial values from the common part of the array (common part between old and new version of the array) are kept. Default value is true.

recopy_: bool = true

if true, will perform an explicit recopy of the old data.

static save(*args, **kwargs)

Overloaded function.

  1. save(filename: str, A: visp._visp.core.ArrayDouble2D, binary: bool = false, header: str = ) -> bool

Save a matrix to a file.

Warning : If you save the matrix as in a text file the precision is less than if you save it in a binary file.

Note

See load()

Parameters:
filename

Absolute file name.

A

Array to be saved.

binary

If true the matrix is saved in a binary file, else a text file.

header

Optional line that will be saved at the beginning of the file.

Returns:

Returns true if success.

  1. save(filename: str, A: visp._visp.core.ArrayDouble2D, binary: bool = false, header: str = ) -> bool

Save a matrix to a file.

Warning : If you save the matrix as in a text file the precision is less than if you save it in a binary file.

Note

See load()

Parameters:
filename

Absolute file name.

A

Array to be saved.

binary

If true the matrix is saved in a binary file, else a text file.

header

Optional line that will be saved at the beginning of the file.

Returns:

Returns true if success.

  1. save(filename: str, A: visp._visp.core.ArrayDouble2D, binary: bool = false, header: str = ) -> bool

Save a matrix to a file.

Warning : If you save the matrix as in a text file the precision is less than if you save it in a binary file.

Note

See load()

Parameters:
filename

Absolute file name.

A

Array to be saved.

binary

If true the matrix is saved in a binary file, else a text file.

header

Optional line that will be saved at the beginning of the file.

Returns:

Returns true if success.

static saveYAML(filename: str, A: visp._visp.core.ArrayDouble2D, header: str =) bool

Save an array in a YAML-formatted file.

Here is an example of outputs.

vpArray2D<double> M(3,4);
vpArray2D::saveYAML("matrix.yml", M, "example: a YAML-formatted header");
vpArray2D::saveYAML("matrixIndent.yml", M, "example:\n    - a YAML-formatted \
header\n    - with inner indentation");

Content of matrix.yml:

example: a YAML-formatted header
rows: 3
cols: 4
data:
  - [0, 0, 0, 0]
  - [0, 0, 0, 0]
  - [0, 0, 0, 0]

Content of matrixIndent.yml:

example:
    - a YAML-formatted header
    - with inner indentation
rows: 3
cols: 4
data:
    - [0, 0, 0, 0]
    - [0, 0, 0, 0]
    - [0, 0, 0, 0]

Note

See loadYAML()

Parameters:
filename

absolute file name.

A

array to be saved in the file.

header

optional lines that will be saved at the beginning of the file. Should be YAML-formatted and will adapt to the indentation if any.

Returns:

Returns true if success.

size(self) int

Return the number of elements of the 2D array.

sumSquare(self) float

Return the sum square of all the elements \(r_{i}\) of the rotation vector r(m).

Returns:

The value

\[\sum{i=0}^{m} r_i^{2}\]

.

t(*args, **kwargs)

Overloaded function.

  1. t(self: visp._visp.core.RotationVector) -> visp._visp.core.RowVector

Return the transpose of the rotation vector.

  1. t(self: visp._visp.core.ArrayDouble2D) -> visp._visp.core.ArrayDouble2D

Compute the transpose of the array.

Returns:

vpArray2D<Type> C = A^T

toStdVector(self) list[float]
Returns:

The corresponding std::vector<double>.

__hash__ = None