ColVector

class ColVector(*args, **kwargs)

Bases: ArrayDouble2D

Implementation of column vector and the associated operations.

This class provides a data structure for a column vector that contains values of double. It contains also some functions to achieve a set of operations on these vectors.

The vpColVector class is derived from vpArray2D<double> .

The code below shows how to create a 3-element column vector of doubles, set the element values and access them:

#include <visp3/code/vpColVector.h

#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif

int main()
{
  vpColVector v(3);
  v[0] = -1; v[1] = -2.1; v[2] = -3;

  std::cout << "v:" << std::endl;
  for (unsigned int i = 0; i < v.size(); ++i) {
    std::cout << v[i] << std::endl;
  }
}

Once build, this previous code produces the following output:

v:
-1
-2.1
-3

You can also use operator<< to initialize a column vector as previously:

#include <visp3/code/vpColVector.h

#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif

int main()
{
  vpColVector v;
  v << -1, -2.1, -3;
  std::cout << "v:" << v << std::endl;
}

If ViSP is build with c++11 enabled, you can do the same using:

#include <visp3/code/vpColVector.h

#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif

int main()
{
  vpColVector v({-1, -2.1, -3});
  std::cout << "v:\n" << v << std::endl;
}

The vector could also be initialized using operator=(const std::initializer_list< double > &)

#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif

int main()
{
  vpColVector v;
  v = {-1, -2.1, -3};
}

JSON serialization

Since ViSP 3.6.0, if ViSP is build with soft_tool_json 3rd-party we introduce JSON serialization capabilities for vpColVector . The following sample code shows how to save a pose vector in a file named col-vector.json and reload the values from this JSON file.

#include <visp3/core/vpColVector.h>

#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif

int main()
{
#if defined(VISP_HAVE_NLOHMANN_JSON)
  std::string filename = "col-vector.json";
  {
    vpColVector v({ 1, 2, 3, 4 });
    std::ofstream file(filename);
    const nlohmann::json j = v;
    file << j;
    file.close();
  }
  {
    std::ifstream file(filename);
    const nlohmann::json j = nlohmann::json::parse(file);
    vpColVector v;
    v = j.get<vpColVector>();
    file.close();
    std::cout << "Read homogeneous matrix from " << filename << ":\n" << v.t() << std::endl;
  }
#endif
}

If you build and execute the sample code, it will produce the following output:

Read homogeneous matrix from col-vector.json:
1  2  3  4

The content of the pose-vector.json file is the following:

$ cat col-vector.json
{"cols":1,"data":[1.0,2.0,3.0,4.0],"rows":4,"type":"vpColVector"}

Overloaded function.

  1. __init__(self: visp._visp.core.ColVector) -> None

Basic constructor that creates an empty 0-size column vector.

  1. __init__(self: visp._visp.core.ColVector, n: int) -> None

  2. __init__(self: visp._visp.core.ColVector, n: int, val: float) -> None

Construct a column vector of size n. Each element is set to val .

  1. __init__(self: visp._visp.core.ColVector, v: visp._visp.core.ColVector) -> None

Copy constructor that allows to construct a column vector from an other one.

  1. __init__(self: visp._visp.core.ColVector, v: visp._visp.core.ColVector, r: int, nrows: int) -> None

Construct a column vector from a part of an input column vector v .

The sub-vector starting from v[r] element and ending on v[r+nrows-1] element is used to initialize the constructed column vector.

Note

See init()

Parameters:
v

Input column vector used for initialization.

r

row index in v that corresponds to the first element of the column vector to construct.

nrows

Number of rows of the constructed column vector.

  1. __init__(self: visp._visp.core.ColVector, v: visp._visp.core.RotationVector) -> None

  2. __init__(self: visp._visp.core.ColVector, p: visp._visp.core.PoseVector) -> None

  3. __init__(self: visp._visp.core.ColVector, t: visp._visp.core.TranslationVector) -> None

  4. __init__(self: visp._visp.core.ColVector, M: visp._visp.core.Matrix) -> None

  5. __init__(self: visp._visp.core.ColVector, M: visp._visp.core.Matrix, j: int) -> None

Constructor that takes column j of matrix M .

  1. __init__(self: visp._visp.core.ColVector, v: list[float]) -> None

  2. __init__(self: visp._visp.core.ColVector, v: list[float]) -> None

  3. __init__(self: visp._visp.core.ColVector, list: std::initializer_list<double>) -> None

  4. __init__(self: visp._visp.core.ColVector, np_array: numpy.ndarray[numpy.float64]) -> None

Construct a column vector by copying a 1D numpy array.

Parameters:
np_array

The numpy 1D array to copy.

Methods

__init__

Overloaded function.

clear

Removes all elements from the vector (which are destroyed), leaving the container with a size of 0.

cppPrint

Print to be used as part of a C++ code later.

cross

Compute and return the cross product of two 3-dimension vectors: \(a \times b\) .

crossProd

Compute and return the cross product of two vectors \(a \times b\) .

csvPrint

Print/save a column vector in csv format.

deg2rad

Converts a column vector containing angles in degrees into radians and returns a reference to the vector.

dotProd

Compute end return the dot product of two column vectors:

extract

Extract a sub-column vector from a column vector.

frobeniusNorm

Compute and return the Frobenius norm \(||v|| = \sqrt{ \sum_{v_{i}^2}}\) of all the elements \(v_{i}\) of the column vector \(\bf v\) that is of dimension \(m\) .

hadamard

Overloaded function.

infinityNorm

Compute and return the infinity norm \({||v||}_{\infty} = max\left({\mid v_{i} \mid}\right)\) with \(i \in \{0, ..., m-1\}\) where m is the vector size and \(v_i\) an element of the vector.

init

Initialize the column vector from a part of an input column vector v .

insert

Overloaded function.

invSort

Return a column vector with elements of v that are reverse sorted with values going from greatest to lowest.

mean

Compute the mean value of all the elements of the vector.

median

Compute the median value of all the elements of the vector.

normalize

Overloaded function.

numpy

Numpy view of the underlying array data.

print

Pretty print a column vector.

rad2deg

Note

See deg2rad()

reshape

Overloaded function.

resize

Overloaded function.

skew

Compute the skew symmetric matrix \([{\bf v}]_\times\) of vector v.

sort

Return a column vector with elements of v that are sorted with values going from lowest to greatest.

stack

Overloaded function.

stackVectors

Overloaded function.

stdev

Compute the standard deviation value of all the elements of the vector.

strCppCode

Returns a C++ code representation of this data array (see cppPrint in the C++ documentation)

strCsv

Returns the CSV representation of this data array (see csvPrint in the C++ documentation)

strMaple

Returns the CSV representation of this data array (see maplePrint in the C++ documentation)

strMatlab

Returns the Matlab representation of this data array (see matlabPrint in the C++ documentation)

sum

Return the sum of all the elements \(v_{i}\) of the column vector \(\bf v\) that is of dimension \(m\) .

sumSquare

Return the sum of squares of all the elements \(v_{i}\) of the column vector \(\bf v\) that is of dimension \(m\) .

t

Overloaded function.

toStdVector

return:

The corresponding std::vector<double>.

transpose

Overloaded function.

Inherited Methods

getMaxValue

Return the array max value.

getRows

Return the number of rows of the 2D array.

conv2

Overloaded function.

getMinValue

Return the array min value.

insertStatic

Insert array B in array A at the given position.

save

Overloaded function.

size

Return the number of elements of the 2D array.

saveYAML

Save an array in a YAML-formatted file.

getCols

Return the number of columns of the 2D array.

Operators

__add__

Overloaded function.

__doc__

__eq__

Overloaded function.

__getitem__

Overloaded function.

__hash__

__iadd__

Operator that allows to add two column vectors.

__imul__

Operator that allows to multiply each element of a column vector by a scalar.

__init__

Overloaded function.

__isub__

Operator that allows to subtract two column vectors.

__itruediv__

Operator that allows to divide each element of a column vector by a scalar.

__module__

__mul__

Overloaded function.

__ne__

Overloaded function.

__neg__

Operator that allows to negate all the column vector elements.

__sub__

Operator subtraction of two vectors this = this - v

__truediv__

Operator that allows to divide each element of a column vector by a scalar.

Attributes

__annotations__

__hash__

__add__(*args, **kwargs)

Overloaded function.

  1. __add__(self: visp._visp.core.ColVector, v: visp._visp.core.ColVector) -> visp._visp.core.ColVector

Operator that allows to add two column vectors.

  1. __add__(self: visp._visp.core.ColVector, t: visp._visp.core.TranslationVector) -> visp._visp.core.TranslationVector

Operator that allows to add a column vector to a translation vector.

Parameters:
t

3-dimension translation vector to add.

Returns:

The sum of the current column vector (*this) and the translation vector to add.

vpTranslationVector t1(1,2,3);
vpColVector v(3);
v[0] = 4;
v[1] = 5;
v[2] = 6;
vpTranslationVector t2;

t2 = v + t1;
// t1 and v leave unchanged
// t2 is now equal to : 5, 7, 9
__eq__(*args, **kwargs)

Overloaded function.

  1. __eq__(self: visp._visp.core.ColVector, v: visp._visp.core.ColVector) -> bool

Compare two column vectors.

Parameters:
v

Vector to compare with.

Returns:

true when their respective size and their respective values are the same, false when their size or values differ.

  1. __eq__(self: visp._visp.core.ColVector, v: float) -> bool

Compare a column vector to a floating point value.

Parameters:
v

Floating point value to compare with.

Returns:

true when all the values of the vector are equal to the floating point value v , false otherwise.

__getitem__(*args, **kwargs)

Overloaded function.

  1. __getitem__(self: visp._visp.core.ColVector, arg0: int) -> float

  2. __getitem__(self: visp._visp.core.ColVector, arg0: slice) -> numpy.ndarray[numpy.float64]

__iadd__(self, v: visp._visp.core.ColVector) visp._visp.core.ColVector

Operator that allows to add two column vectors.

__imul__(self, x: float) visp._visp.core.ColVector

Operator that allows to multiply each element of a column vector by a scalar.

vpColVector v(3);
v[0] = 1;
v[1] = 2;
v[2] = 3;

v *= 3;
// v is now equal to : [3, 6, 9]
Parameters:
x: float

The scalar.

Returns:

The column vector multiplied by the scalar.

__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: visp._visp.core.ColVector) -> None

Basic constructor that creates an empty 0-size column vector.

  1. __init__(self: visp._visp.core.ColVector, n: int) -> None

  2. __init__(self: visp._visp.core.ColVector, n: int, val: float) -> None

Construct a column vector of size n. Each element is set to val .

  1. __init__(self: visp._visp.core.ColVector, v: visp._visp.core.ColVector) -> None

Copy constructor that allows to construct a column vector from an other one.

  1. __init__(self: visp._visp.core.ColVector, v: visp._visp.core.ColVector, r: int, nrows: int) -> None

Construct a column vector from a part of an input column vector v .

The sub-vector starting from v[r] element and ending on v[r+nrows-1] element is used to initialize the constructed column vector.

Note

See init()

Parameters:
v

Input column vector used for initialization.

r

row index in v that corresponds to the first element of the column vector to construct.

nrows

Number of rows of the constructed column vector.

  1. __init__(self: visp._visp.core.ColVector, v: visp._visp.core.RotationVector) -> None

  2. __init__(self: visp._visp.core.ColVector, p: visp._visp.core.PoseVector) -> None

  3. __init__(self: visp._visp.core.ColVector, t: visp._visp.core.TranslationVector) -> None

  4. __init__(self: visp._visp.core.ColVector, M: visp._visp.core.Matrix) -> None

  5. __init__(self: visp._visp.core.ColVector, M: visp._visp.core.Matrix, j: int) -> None

Constructor that takes column j of matrix M .

  1. __init__(self: visp._visp.core.ColVector, v: list[float]) -> None

  2. __init__(self: visp._visp.core.ColVector, v: list[float]) -> None

  3. __init__(self: visp._visp.core.ColVector, list: std::initializer_list<double>) -> None

  4. __init__(self: visp._visp.core.ColVector, np_array: numpy.ndarray[numpy.float64]) -> None

Construct a column vector by copying a 1D numpy array.

Parameters:
np_array

The numpy 1D array to copy.

__isub__(self, v: visp._visp.core.ColVector) visp._visp.core.ColVector

Operator that allows to subtract two column vectors.

__itruediv__(self, x: float) visp._visp.core.ColVector

Operator that allows to divide each element of a column vector by a scalar.

vpColVector v(3);
v[0] = 8;
v[1] = 4;
v[2] = 2;

v /= 2;
// v is now equal to : [4, 2, 1]
Parameters:
x: float

The scalar.

Returns:

The column vector divided by the scalar.

__mul__(*args, **kwargs)

Overloaded function.

  1. __mul__(self: visp._visp.core.ColVector, v: visp._visp.core.ColVector) -> float

Operator that performs the dot product between two column vectors.

Note

See dotProd()

  1. __mul__(self: visp._visp.core.ColVector, v: visp._visp.core.RowVector) -> visp._visp.core.Matrix

Multiply a column vector by a row vector.

Parameters:
v

Row vector.

Returns:

The resulting matrix.

  1. __mul__(self: visp._visp.core.ColVector, M: visp._visp.core.Matrix) -> visp._visp.core.Matrix

Multiply a column vector by a matrix.

Parameters:
M

Matrix.

Returns:

The resulting matrix.

  1. __mul__(self: visp._visp.core.ColVector, x: float) -> visp._visp.core.ColVector

Operator that allows to multiply each element of a column vector by a scalar.

vpColVector v(3);
v[0] = 1;
v[1] = 2;
v[2] = 3;

vpColVector w = v * 3;
// v is unchanged
// w is now equal to : [3, 6, 9]
Parameters:
x

The scalar.

Returns:

The column vector multiplied by the scalar. The current column vector (*this) is unchanged.

__ne__(*args, **kwargs)

Overloaded function.

  1. __ne__(self: visp._visp.core.ColVector, v: visp._visp.core.ColVector) -> bool

Compare two column vectors.

Parameters:
v

Vector to compare with.

Returns:

true when their respective size or their values differ, false when their size and values are the same.

  1. __ne__(self: visp._visp.core.ColVector, v: float) -> bool

Compare a column vector to a floating point value.

Parameters:
v

Floating point value to compare with.

Returns:

true when at least one value of the vector differ from the floating point value v . false when all the vector values are equal to v .

__neg__(self) visp._visp.core.ColVector

Operator that allows to negate all the column vector elements.

vpColVector r(3, 1);
// r contains [1 1 1]^T
vpColVector v = -r;
// v contains [-1 -1 -1]^T
__sub__(self, v: visp._visp.core.ColVector) visp._visp.core.ColVector

Operator subtraction of two vectors this = this - v

__truediv__(self, x: float) visp._visp.core.ColVector

Operator that allows to divide each element of a column vector by a scalar.

vpColVector v(3);
v[0] = 8;
v[1] = 4;
v[2] = 2;

vpColVector w = v / 2;
// v is unchanged
// w is now equal to : [4, 2, 1]
Parameters:
x: float

The scalar.

Returns:

The column vector divided by the scalar. The current column vector (*this) is unchanged.

clear(self) None

Removes all elements from the vector (which are destroyed), leaving the container with a size of 0.

static conv2(*args, **kwargs)

Overloaded function.

  1. conv2(M: visp._visp.core.ArrayDouble2D, kernel: visp._visp.core.ArrayDouble2D, mode: str) -> visp._visp.core.ArrayDouble2D

Perform a 2D convolution similar to Matlab conv2 function: \(M \star kernel\) .

<unparsed image <doxmlparser.compound.docImageType object at 0x7f422775e920>>

Note

This is a very basic implementation that does not use FFT.

Parameters:
M

First matrix.

kernel

Second matrix.

mode

Convolution mode: “full” (default), “same”, “valid”.

  1. conv2(M: visp._visp.core.ArrayDouble2D, kernel: visp._visp.core.ArrayDouble2D, res: visp._visp.core.ArrayDouble2D, mode: str) -> None

Perform a 2D convolution similar to Matlab conv2 function: \(M \star kernel\) .

<unparsed image <doxmlparser.compound.docImageType object at 0x7f4227778580>>

Note

This is a very basic implementation that does not use FFT.

Parameters:
M

First array.

kernel

Second array.

res

Result.

mode

Convolution mode: “full” (default), “same”, “valid”.

  1. conv2(M: visp._visp.core.ArrayDouble2D, kernel: visp._visp.core.ArrayDouble2D, mode: str) -> visp._visp.core.ArrayDouble2D

Perform a 2D convolution similar to Matlab conv2 function: \(M \star kernel\) .

<unparsed image <doxmlparser.compound.docImageType object at 0x7f422775e920>>

Note

This is a very basic implementation that does not use FFT.

Parameters:
M

First matrix.

kernel

Second matrix.

mode

Convolution mode: “full” (default), “same”, “valid”.

  1. conv2(M: visp._visp.core.ArrayDouble2D, kernel: visp._visp.core.ArrayDouble2D, res: visp._visp.core.ArrayDouble2D, mode: str) -> None

Perform a 2D convolution similar to Matlab conv2 function: \(M \star kernel\) .

<unparsed image <doxmlparser.compound.docImageType object at 0x7f4227778580>>

Note

This is a very basic implementation that does not use FFT.

Parameters:
M

First array.

kernel

Second array.

res

Result.

mode

Convolution mode: “full” (default), “same”, “valid”.

cppPrint(self: visp._visp.core.ColVector, os: std::ostream, matrixName: str = A, octet: bool = false) std::ostream

Print to be used as part of a C++ code later.

The following code shows how to use this function:

#include <visp3/core/vpColVector.h>

#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif

int main()
{
  vpColVector v(3);
  for (unsigned int i=0; i<v.size(); ++i)
    v[i] = i;
  v.cppPrint(std::cout, "v");
}

It produces the following output that could be copy/paste in a C++ code:

vpColVector v (3);
v[0] = 0;
v[1] = 1;
v[2] = 2;

Note

See print() , matlabPrint() , maplePrint()

Parameters:
os

the stream to be printed in.

matrixName

name of the column vector, “A” by default.

octet

if false, print using double, if true, print byte per byte each bytes of the double array.

static cross(a: visp._visp.core.ColVector, b: visp._visp.core.ColVector) visp._visp.core.ColVector

Compute and return the cross product of two 3-dimension vectors: \(a \times b\) .

Note

See crossProd() , dotProd() , operator*(const vpColVector &)

Parameters:
a: visp._visp.core.ColVector

3-dimension column vector.

b: visp._visp.core.ColVector

3-dimension column vector.

Returns:

The cross product \(a \times b\) .

static crossProd(a: visp._visp.core.ColVector, b: visp._visp.core.ColVector) visp._visp.core.ColVector

Compute and return the cross product of two vectors \(a \times b\) .

Note

See dotProd()

Parameters:
a: visp._visp.core.ColVector

3-dimension column vector.

b: visp._visp.core.ColVector

3-dimension column vector.

Returns:

The cross product \(a \times b\) .

csvPrint(self: visp._visp.core.ColVector, os: std::ostream) std::ostream

Print/save a column vector in csv format.

The following code

#include <visp3/core/vpColVector.h>

#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif

int main()
{
  std::ofstream ofs("log.csv", std::ofstream::out);
  vpColVector v(3);
  for (unsigned int i=0; i<v.size(); ++i)
    v[i] = i;

  v.csvPrint(ofs);

  ofs.close();
}

produces log.csv file that contains:

0
1
2
deg2rad(self) visp._visp.core.ColVector

Converts a column vector containing angles in degrees into radians and returns a reference to the vector.

Note

See rad2deg()

Returns:

A reference to the vector with values expressed in [rad].

static dotProd(a: visp._visp.core.ColVector, b: visp._visp.core.ColVector) float

Compute end return the dot product of two column vectors:

\[a \cdot b = \sum_{i=0}^n a_i * b_i\]

where n is the dimension of both vectors.

Note

See cross() , crossProd()

extract(self, r: int, colsize: int) visp._visp.core.ColVector

Extract a sub-column vector from a column vector.

vpColVector v1;
for (unsigned int i=0; i<4; ++i)
  v1.stack(i);
// v1 is equal to [0 1 2 3]^T
vpColVector v2 = v1.extract(1, 3);
// v2 is equal to [1 2 3]^T
Parameters:
r: int

Index of the row corresponding to the first element of the vector to extract.

colsize: int

Size of the vector to extract.

frobeniusNorm(self) float

Compute and return the Frobenius norm \(||v|| = \sqrt{ \sum_{v_{i}^2}}\) of all the elements \(v_{i}\) of the column vector \(\bf v\) that is of dimension \(m\) .

Note

See infinityNorm()

Returns:

The Frobenius norm if the vector is initialized, 0 otherwise.

getCols(self) int

Return the number of columns of the 2D array.

Note

See getRows() , size()

getMaxValue(self) float

Return the array max value.

getMinValue(self) float

Return the array min value.

getRows(self) int

Return the number of rows of the 2D array.

Note

See getCols() , size()

hadamard(*args, **kwargs)

Overloaded function.

  1. hadamard(self: visp._visp.core.ColVector, v: visp._visp.core.ColVector) -> visp._visp.core.ColVector

Compute the Hadamard product (element wise vector multiplication).

Parameters:
v

Second vector;

Returns:

v1.hadamard(v2) The kronecker product : \(v1 \circ v2 = (v1 \circ v2)_{i} = (v1)_{i} (v2)_{i}\)

  1. hadamard(self: visp._visp.core.ArrayDouble2D, m: visp._visp.core.ArrayDouble2D) -> visp._visp.core.ArrayDouble2D

Parameters:
m

Second matrix;

Returns:

m1.hadamard(m2) The Hadamard product : \(m1 \circ m2 = (m1 \circ m2)_{i,j} = (m1)_{i,j} (m2)_{i,j}\)

infinityNorm(self) float

Compute and return the infinity norm \({||v||}_{\infty} = max\left({\mid v_{i} \mid}\right)\) with \(i \in \{0, ..., m-1\}\) where m is the vector size and \(v_i\) an element of the vector.

Note

See frobeniusNorm()

Returns:

The infinity norm if the matrix is initialized, 0 otherwise.

init(self, v: visp._visp.core.ColVector, r: int, nrows: int) None

Initialize the column vector from a part of an input column vector v .

The sub-vector starting from v[r] element and ending on v[r+nrows-1] element is used to initialize the constructed column vector.

The following code shows how to use this function:

#include <visp3/core/vpColVector.h>

#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif

int main()
{
  vpColVector v(4);
  int val = 0;
  for(size_t i=0; i<v.getRows(); ++i) {
    v[i] = val++;
  }
  std::cout << "v: " << v.t() << std::endl;

  vpColVector w;
  w.init(v, 0, 2);
  std::cout << "w: " << w.t() << std::endl;
}

It produces the following output:

v: 0 1 2 3
w: 1 2
Parameters:
v: visp._visp.core.ColVector

Input column vector used for initialization.

r: int

row index in v that corresponds to the first element of the column vector to construct.

nrows: int

Number of rows of the constructed column vector.

insert(*args, **kwargs)

Overloaded function.

  1. insert(self: visp._visp.core.ColVector, i: int, v: visp._visp.core.ColVector) -> None

Insert a column vector.The following example shows how to use this function:

#include <visp3/core/vpColVector.h>

#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif

int main()
{
  vpColVector v(4);
  for (unsigned int i=0; i < v.size(); ++i)
    v[i] = i;
  std::cout << "v: " << v.t() << std::endl;

  vpColVector w(2);
  for (unsigned int i=0; i < w.size(); ++i)
    w[i] = i+10;
  std::cout << "w: " << w.t() << std::endl;

  v.insert(1, w);
  std::cout << "v: " << v.t() << std::endl;
}

It produces the following output:

v: 0 1 2 3
w: 10 11
v: 0 10 11 3
Parameters:
i

Index of the first element to introduce. This index starts from 0.

v

Column vector to insert.

  1. insert(self: visp._visp.core.ArrayDouble2D, A: visp._visp.core.ArrayDouble2D, r: int, c: int) -> None

Insert array A at the given position in the current array.

Warning

Throw vpException::dimensionError if the dimensions of the matrices do not allow the operation.

Parameters:
A

The array to insert.

r

The index of the row to begin to insert data.

c

The index of the column to begin to insert data.

  1. insert(self: visp._visp.core.ArrayDouble2D, A: visp._visp.core.ArrayDouble2D, B: visp._visp.core.ArrayDouble2D, r: int, c: int) -> visp._visp.core.ArrayDouble2D

Insert array B in array A at the given position.

Warning

Throw exception if the sizes of the arrays do not allow the insertion.

Parameters:
A

Main array.

B

Array to insert.

r

Index of the row where to add the array.

c

Index of the column where to add the array.

Returns:

Array with B insert in A.

static insertStatic(A: visp._visp.core.ArrayDouble2D, B: visp._visp.core.ArrayDouble2D, C: visp._visp.core.ArrayDouble2D, r: int, c: int) None

Insert array B in array A at the given position.

Warning

Throw exception if the sizes of the arrays do not allow the insertion.

Parameters:
A: visp._visp.core.ArrayDouble2D

Main array.

B: visp._visp.core.ArrayDouble2D

Array to insert.

C: visp._visp.core.ArrayDouble2D

Result array.

r: int

Index of the row where to insert array B.

c: int

Index of the column where to insert array B.

static invSort(v: visp._visp.core.ColVector) visp._visp.core.ColVector

Return a column vector with elements of v that are reverse sorted with values going from greatest to lowest.

Example:

#include <visp3/core/vpColVector.h>

#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif

int main()
{
  vpColVector v(10);
  v[0] = 5; v[1] = 7; v[2] = 4; v[3] = 2; v[4] = 8;
  v[5] = 6; v[6] = 1; v[7] = 9; v[8] = 0; v[9] = 3;

  std::cout << "v: " << v.t() << std::endl;

  vpColVector s = vpColVector::invSort(v);
  std::cout << "s: " << s.t() << std::endl;
}

Output:

v: 5  7  4  2  8  6  1  9  0  3
s: 9  8  7  6  5  4  3  2  1  0

Note

See sort()

static mean(v: visp._visp.core.ColVector) float

Compute the mean value of all the elements of the vector.

static median(v: visp._visp.core.ColVector) float

Compute the median value of all the elements of the vector.

normalize(*args, **kwargs)

Overloaded function.

  1. normalize(self: visp._visp.core.ColVector) -> visp._visp.core.ColVector

Normalize the column vector.

Considering the n-dim column vector \({\bf x} = (x_0, x_1, \ldots, n_{n-1})\) normalize each vector element \(i\) :

\[x_i = \frac{x_i}{\sqrt{\sum_{i=0}^{n-1}x^2_i}} \]
Returns:

A reference to the normalized vector.

  1. normalize(self: visp._visp.core.ColVector, x: visp._visp.core.ColVector) -> visp._visp.core.ColVector

Normalize a column vector.

Considering the n-dim column vector \({\bf x} = (x_0, x_1, \ldots, n_{n-1})\) normalize each vector element \(i\) :

\[x_i = \frac{x_i}{\sqrt{\sum_{i=0}^{n-1} x^2_i}} \]
Parameters:
x

As input, the vector to normalize, as output the normalized vector.

Returns:

A reference to the normalized vector.

numpy(self) numpy.ndarray[numpy.float64]

Numpy view of the underlying array data. This numpy view can be used to directly modify the array.

print(self: visp._visp.core.ColVector, s: std::ostream, length: int, intro: str = 0) int

Pretty print a column vector. The data are tabulated. The common widths before and after the decimal point are set with respect to the parameter maxlen.

Note

See std::ostream & operator<<(std::ostream &s, const vpArray2D<Type> &A)

Parameters:
s

Stream used for the printing.

length

The suggested width of each vector element. The actual width grows in order to accommodate the whole integral part, and shrinks if the whole extent is not needed for all the numbers.

intro

The introduction which is printed before the vector. Can be set to zero (or omitted), in which case the introduction is not printed.

Returns:

Returns the common total width for all vector elements.

rad2deg(self) visp._visp.core.ColVector

Note

See deg2rad()

Returns:

A reference to the vector with values expressed in [deg].

reshape(*args, **kwargs)

Overloaded function.

  1. reshape(self: visp._visp.core.ColVector, M: visp._visp.core.Matrix, nrows: int, ncols: int) -> None

Reshape the column vector in a matrix.

The following example shows how to use this method.

#include <visp3/core/vpColVector.h>

#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif

int main()
{
  int var=0;
  vpMatrix mat(3, 4);
  for (int i = 0; i < 3; ++i)
    for (int j = 0; j < 4; ++j)
      mat[i][j] = ++var;
  std::cout << "mat: \n" << mat << std::endl;

  vpColVector col = mat.stackColumns();
  std::cout << "column vector: \n" << col << std::endl;

  vpMatrix remat = col.reshape(3, 4);
  std::cout << "remat: \n" << remat << std::endl;
}

If you run the previous example, you get:

mat:
1  2  3  4
5  6  7  8
9  10  11  12
column vector:
1
5
9
2
6
10
3
7
11
4
8
12
remat:
1  2  3  4
5  6  7  8
9  10  11  12
Parameters:
M

the reshaped matrix.

nrows

number of rows of the matrix.

ncols

number of columns of the matrix.

  1. reshape(self: visp._visp.core.ColVector, nrows: int, ncols: int) -> visp._visp.core.Matrix

Reshape the column vector in a matrix.

Note

See reshape(vpMatrix &, const unsigned int &, const unsigned int &)

Parameters:
nrows

number of rows of the matrix

ncols

number of columns of the matrix

Returns:

The reshaped matrix.

  1. reshape(self: visp._visp.core.ArrayDouble2D, nrows: int, ncols: int) -> None

resize(*args, **kwargs)

Overloaded function.

  1. resize(self: visp._visp.core.ColVector, i: int, flagNullify: bool = true) -> None

Modify the size of the column vector.

Parameters:
i

Size of the vector. This value corresponds to the vector number of rows.

flagNullify

If true, set the data to zero.

  1. resize(self: visp._visp.core.ColVector, nrows: int, ncols: int, flagNullify: bool) -> None

Resize the column vector to a nrows-dimension vector. This function can only be used with ncols = 1.

Parameters:
nrows

Vector number of rows. This value corresponds to the size of the vector.

ncols

Vector number of columns. This value should be set to 1.

flagNullify

If true, set the data to zero.

  1. resize(self: visp._visp.core.ArrayDouble2D, nrows: int, ncols: int, flagNullify: bool = true, recopy_: bool = true) -> None

Set the size of the array and initialize all the values to zero.

Parameters:
nrows

number of rows.

ncols

number of column.

flagNullify

if true, then the array is re-initialized to 0 after resize. If false, the initial values from the common part of the array (common part between old and new version of the array) are kept. Default value is true.

recopy_

if true, will perform an explicit recopy of the old data.

static save(*args, **kwargs)

Overloaded function.

  1. save(filename: str, A: visp._visp.core.ArrayDouble2D, binary: bool = false, header: str = ) -> bool

Save a matrix to a file.

Warning : If you save the matrix as in a text file the precision is less than if you save it in a binary file.

Note

See load()

Parameters:
filename

Absolute file name.

A

Array to be saved.

binary

If true the matrix is saved in a binary file, else a text file.

header

Optional line that will be saved at the beginning of the file.

Returns:

Returns true if success.

  1. save(filename: str, A: visp._visp.core.ArrayDouble2D, binary: bool = false, header: str = ) -> bool

Save a matrix to a file.

Warning : If you save the matrix as in a text file the precision is less than if you save it in a binary file.

Note

See load()

Parameters:
filename

Absolute file name.

A

Array to be saved.

binary

If true the matrix is saved in a binary file, else a text file.

header

Optional line that will be saved at the beginning of the file.

Returns:

Returns true if success.

  1. save(filename: str, A: visp._visp.core.ArrayDouble2D, binary: bool = false, header: str = ) -> bool

Save a matrix to a file.

Warning : If you save the matrix as in a text file the precision is less than if you save it in a binary file.

Note

See load()

Parameters:
filename

Absolute file name.

A

Array to be saved.

binary

If true the matrix is saved in a binary file, else a text file.

header

Optional line that will be saved at the beginning of the file.

Returns:

Returns true if success.

static saveYAML(filename: str, A: visp._visp.core.ArrayDouble2D, header: str =) bool

Save an array in a YAML-formatted file.

Here is an example of outputs.

vpArray2D<double> M(3,4);
vpArray2D::saveYAML("matrix.yml", M, "example: a YAML-formatted header");
vpArray2D::saveYAML("matrixIndent.yml", M, "example:\n    - a YAML-formatted \
header\n    - with inner indentation");

Content of matrix.yml:

example: a YAML-formatted header
rows: 3
cols: 4
data:
  - [0, 0, 0, 0]
  - [0, 0, 0, 0]
  - [0, 0, 0, 0]

Content of matrixIndent.yml:

example:
    - a YAML-formatted header
    - with inner indentation
rows: 3
cols: 4
data:
    - [0, 0, 0, 0]
    - [0, 0, 0, 0]
    - [0, 0, 0, 0]

Note

See loadYAML()

Parameters:
filename

absolute file name.

A

array to be saved in the file.

header

optional lines that will be saved at the beginning of the file. Should be YAML-formatted and will adapt to the indentation if any.

Returns:

Returns true if success.

size(self) int

Return the number of elements of the 2D array.

static skew(v: visp._visp.core.ColVector) visp._visp.core.Matrix

Compute the skew symmetric matrix \([{\bf v}]_\times\) of vector v.

\[\begin{split}\mbox{if} \quad {\bf v} = \left( \begin{array}{c} x \\y \\z \end{array}\right), \quad \mbox{then} \qquad [{\bf v}]_\times = \left( \begin{array}{ccc} 0 & -z & y \\z & 0 & -x \\-y & x & 0 \end{array}\right) \end{split}\]
Parameters:
v: visp._visp.core.ColVector

Input vector used to compute the skew symmetric matrix.

static sort(v: visp._visp.core.ColVector) visp._visp.core.ColVector

Return a column vector with elements of v that are sorted with values going from lowest to greatest.

Example:

#include <visp3/core/vpColVector.h>

#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif

int main()
{
  vpColVector v(10);
  v[0] = 5; v[1] = 7; v[2] = 4; v[3] = 2; v[4] = 8;
  v[5] = 6; v[6] = 1; v[7] = 9; v[8] = 0; v[9] = 3;

  std::cout << "v: " << v.t() << std::endl;

  vpColVector s = vpColVector::sort(v);
  std::cout << "s: " << s.t() << std::endl;
}

Output:

v: 5  7  4  2  8  6  1  9  0  3
s: 0  1  2  3  4  5  6  7  8  9

Note

See invSort()

stack(*args, **kwargs)

Overloaded function.

  1. stack(self: visp._visp.core.ColVector, d: float) -> None

Stack column vector with a new element at the end of the vector.

vpColVector v(3, 1);
// v is equal to [1 1 1]^T
v.stack(-2);
// v is equal to [1 1 1 -2]^T

Note

See stack(const vpColVector &, const vpColVector &)

Note

See stack(const vpColVector &, const vpColVector &, vpColVector &)

Parameters:
d

Element to stack to the existing vector.

  1. stack(self: visp._visp.core.ColVector, v: visp._visp.core.ColVector) -> None

Stack column vectors.

vpColVector v1(3, 1);
// v1 is equal to [1 1 1]^T
vpColVector v2(2, 3);
// v2 is equal to [3 3]^T
v1.stack(v2);
// v1 is equal to [1 1 1 3 3]^T

Note

See stack(const vpColVector &, const double &)

Note

See stack(const vpColVector &, const vpColVector &)

Note

See stack(const vpColVector &, const vpColVector &, vpColVector &)

Parameters:
v

Vector to stack to the existing one.

static stackVectors(*args, **kwargs)

Overloaded function.

  1. stackVectors(A: visp._visp.core.ColVector, B: visp._visp.core.ColVector) -> visp._visp.core.ColVector

Stack column vectors.

vpColVector A(3);
vpColVector B(5);
vpColVector C;
C = vpColVector::stack(A, B); // C = [A B]T
// C is now an 8 dimension column vector

Note

See stack(const vpColVector &)

Note

See stack(const vpColVector &, const vpColVector &, vpColVector &)

Parameters:
A

Initial vector.

B

Vector to stack at the end of A.

Returns:

Stacked vector \([A B]^T\) .

  1. stackVectors(A: visp._visp.core.ColVector, B: visp._visp.core.ColVector, C: visp._visp.core.ColVector) -> None

Stack column vectors.

vpColVector  A(3);
vpColVector  B(5);
vpColVector  C;
vpColVector::stack (A, B, C); // C = [A B]T
// C is now an 8 dimension column vector

Note

See stack(const vpColVector &)

Note

See stack(const vpColVector &, const vpColVector &)

Parameters:
A

Initial vector.

B

Vector to stack at the end of A.

C

Resulting stacked vector \(C = [A B]^T\) .

static stdev(v: visp._visp.core.ColVector, useBesselCorrection: bool = false) float

Compute the standard deviation value of all the elements of the vector.

strCppCode(self, name: str, byte_per_byte: bool = False) str

Returns a C++ code representation of this data array (see cppPrint in the C++ documentation)

Parameters:
name: str

variable name of the matrix.

byte_per_byte: bool = False

Whether to print byte per byte defaults to false.

strCsv(self) str

Returns the CSV representation of this data array (see csvPrint in the C++ documentation)

strMaple(self) str

Returns the CSV representation of this data array (see maplePrint in the C++ documentation)

strMatlab(self) str

Returns the Matlab representation of this data array (see matlabPrint in the C++ documentation)

sum(self) float

Return the sum of all the elements \(v_{i}\) of the column vector \(\bf v\) that is of dimension \(m\) .

Returns:

The value

\[\sum_{i=0}^{m-1} v_i \]

.

sumSquare(self) float

Return the sum of squares of all the elements \(v_{i}\) of the column vector \(\bf v\) that is of dimension \(m\) .

Returns:

The value

\[\sum_{i=0}^{m-1} v_i^{2}\]

.

t(*args, **kwargs)

Overloaded function.

  1. t(self: visp._visp.core.ColVector) -> visp._visp.core.RowVector

Transpose the column vector. The resulting vector becomes a row vector.

  1. t(self: visp._visp.core.ArrayDouble2D) -> visp._visp.core.ArrayDouble2D

Compute the transpose of the array.

Returns:

vpArray2D<Type> C = A^T

toStdVector(self) list[float]
Returns:

The corresponding std::vector<double>.

transpose(*args, **kwargs)

Overloaded function.

  1. transpose(self: visp._visp.core.ColVector) -> visp._visp.core.RowVector

Transpose the column vector. The resulting vector becomes a row vector.

Note

See t()

  1. transpose(self: visp._visp.core.ColVector, v: visp._visp.core.RowVector) -> None

Transpose the column vector. The resulting vector v becomes a row vector.

Note

See t()

__hash__ = None