VelocityTwistMatrix

class VelocityTwistMatrix(*args, **kwargs)

Bases: ArrayDouble2D

This class derived from vpArray2D<double> implements the 6 by 6 matrix which transforms velocities from one frame to another. This matrix is also called velocity twist transformation matrix.

The full velocity twist transformation matrix allows to compute the velocity at point a expressed in frame a knowing its velocity at point b expressed in frame b . This matrix is defined as:

\[\begin{split}^a{\bf V}_b = \left[\begin{array}{cc} ^a{\bf R}_b & [^a{\bf t}_b]_\times \; ^a{\bf R}_b\\{\bf 0}_{3\times 3} & ^a{\bf R}_b \end{array} \right] \end{split}\]

where \(^a{\bf R}_b\) is a rotation matrix and \(^a{\bf t}_b\) is a translation vector.

There are different ways to initialize such a full velocity twist matrix. The following example shows how to proceed setting the translation and rotation matrix transformations:

#include <visp3/core/vpVelocityTwistMatrix.h>

int main()
{
  vpTranslationVector cte(0.1, 0.2, 0.3);
  vpRotationMatrix cRe( {0,  0, -1,
                         0, -1,  0,
                        -1,  0,  0} );

  vpVelocityTwistMatrix cVe(cte, cRe);
  std::cout << "cVe:\n" << cVe << std::endl;
}

It produces the following printings:

cVe:
0  0  -1  -0.2  0.3  0
0  -1  0  0.1  0  -0.3
-1  0  0  0  -0.1  0.2
0  0  0  0  0  -1
0  0  0  0  -1  0
0  0  0  -1  0  0

When the point where the velocity is expressed doesn’t change, the matrix becomes block diagonal. It allows than to compute the velocity at point b expressed in frame a knowing its velocity at point b expressed in frame b :

\[\begin{split}^a{\bf V}_b = \left[\begin{array}{cc} ^a{\bf R}_b & {\bf 0}_{3\times 3} \\{\bf 0}_{3\times 3} & ^a{\bf R}_b \end{array} \right] \end{split}\]

To initialize such a velocity twist matrix where translation is not taken into account you can proceed like in the following code:

#include <visp3/core/vpVelocityTwistMatrix.h>

int main()
{
  vpRotationMatrix cRe( {0,  0, -1,
                         0, -1,  0,
                        -1,  0,  0} );

  vpVelocityTwistMatrix cVe(cRe);
  std::cout << "cVe:\n" << cVe << std::endl;
}

It produces the following printings:

cVe:
0  0  -1  0  0  0
0  -1  0  0  0  0
-1  0  0  0  0  0
0  0  0  0  0  -1
0  0  0  0  -1  0
0  0  0  -1  0  0

The code below shows how to convert a velocity skew expressed at the origin of the camera frame into the origin of the fix frame using the full velocity twist matrix.

#include <visp3/core/vpColVector.h>
#include <visp3/core/vpVelocityTwistMatrix.h>

int main()
{
  vpVelocityTwistMatrix fVc; // Twist transformation matrix from fix to camera frame

  vpHomogeneousMatrix fMc; // Fix to camera frame transformation
  // ... fMc need here to be initialized

  fVc.buildFrom(fMc);

  vpColVector c_v(6); // Velocity in the camera frame: vx,vy,vz,wx,wy,wz
  // ... c_v should here have an initial value

  vpColVector f_v(6); // Velocity in the fix frame: vx,vy,vz,wx,wy,wz

  // Compute the velocity in the fix frame
  f_v = fVc * c_v;
}

Overloaded function.

  1. __init__(self: visp._visp.core.VelocityTwistMatrix) -> None

Initialize a velocity twist transformation matrix as identity.

  1. __init__(self: visp._visp.core.VelocityTwistMatrix, V: visp._visp.core.VelocityTwistMatrix) -> None

Initialize a velocity twist transformation matrix from another velocity twist matrix.

Parameters:
V

Velocity twist matrix used as initializer.

  1. __init__(self: visp._visp.core.VelocityTwistMatrix, M: visp._visp.core.HomogeneousMatrix, full: bool = true) -> None

Initialize a velocity twist transformation matrix from an homogeneous matrix \(M\) with

\[\begin{split}{\bf M} = \left[\begin{array}{cc} {\bf R} & {\bf t} \\{\bf 0}_{1\times 3} & 1 \end{array} \right] \end{split}\]
Parameters:
M

Homogeneous matrix \(\bf M\) used to initialize the velocity twist transformation matrix.

full

Boolean used to indicate which matrix should be filled.

  • When set to true, use the complete velocity skew transformation :

    \[\begin{split}{\bf V} = \left[\begin{array}{cc} {\bf R} & [{\bf t}]_\times \; {\bf R} \\{\bf 0}_{3\times 3} & {\bf R} \end{array} \right] \end{split}\]
  • When set to false, use the block diagonal velocity skew transformation:

    \[\begin{split}{\bf V} = \left[\begin{array}{cc} {\bf R} & {\bf 0}_{3\times 3} \\{\bf 0}_{3\times 3} & {\bf R} \end{array} \right]\end{split}\]

  1. __init__(self: visp._visp.core.VelocityTwistMatrix, t: visp._visp.core.TranslationVector, R: visp._visp.core.RotationMatrix) -> None

Initialize a velocity twist transformation matrix from a translation vector t and a rotation matrix R .

\[\begin{split}{\bf V} = \left[\begin{array}{cc} {\bf R} & [{\bf t}]_\times \; {\bf R} \\{\bf 0}_{3\times 3} & {\bf R} \end{array} \right] \end{split}\]
Parameters:
t

Translation vector.

R

Rotation matrix.

  1. __init__(self: visp._visp.core.VelocityTwistMatrix, t: visp._visp.core.TranslationVector, thetau: visp._visp.core.ThetaUVector) -> None

Initialize a velocity twist transformation matrix from a translation vector t and a rotation vector with \(\theta u\) parametrization.

\[\begin{split}{\bf V} = \left[\begin{array}{cc} {\bf R} & [{\bf t}]_\times \; {\bf R} \\{\bf 0}_{3\times 3} & {\bf R} \end{array} \right] \end{split}\]
Parameters:
t

Translation vector.

thetau

math:theta u rotation vector used to initialize rotation vector \(R\) .

  1. __init__(self: visp._visp.core.VelocityTwistMatrix, tx: float, ty: float, tz: float, tux: float, tuy: float, tuz: float) -> None

Initialize a velocity twist transformation matrix from a translation vector \({\bf t}=(t_x, t_y, t_z)^T\) and a rotation vector with \(\theta {\bf u}=(\theta u_x, \theta u_y, \theta u_z)^T\) parametrization.

\[\begin{split}{\bf V} = \left[\begin{array}{cc} {\bf R} & [{\bf t}]_\times \; {\bf R} \\{\bf 0}_{3\times 3} & {\bf R} \end{array} \right] \end{split}\]
Parameters:
tx

Translation vector in meters.

ty

Translation vector in meters.

tz

Translation vector in meters.

tux

math:theta {bf u} rotation vector expressed in radians used to initialize \(R\) .

tuy

math:theta {bf u} rotation vector expressed in radians used to initialize \(R\) .

tuz

math:theta {bf u} rotation vector expressed in radians used to initialize \(R\) .

  1. __init__(self: visp._visp.core.VelocityTwistMatrix, R: visp._visp.core.RotationMatrix) -> None

Initialize a velocity twist transformation matrix from a rotation matrix R .

\[\begin{split}{\bf V} = \left[\begin{array}{cc} {\bf R} & {\bf 0}_{3\times 3} \\{\bf 0}_{3\times 3} & {\bf R} \end{array} \right] \end{split}\]
Parameters:
R

Rotation matrix.

  1. __init__(self: visp._visp.core.VelocityTwistMatrix, thetau: visp._visp.core.ThetaUVector) -> None

Initialize a velocity twist transformation matrix from a rotation vector with \(\theta u\) parametrization.

\[\begin{split}{\bf V} = \left[\begin{array}{cc} {\bf R} & {\bf 0}_{3\times 3}\\{\bf 0}_{3\times 3} & {\bf R} \end{array} \right] \end{split}\]
Parameters:
thetau

math:theta u rotation vector used to initialize rotation vector \(R\) .

Methods

__init__

Overloaded function.

buildFrom

Overloaded function.

extract

Overloaded function.

eye

Initialize a 6x6 velocity twist matrix as identity.

inverse

Overloaded function.

print

Pretty print a velocity twist matrix.

resize

Overloaded function.

Inherited Methods

insert

Overloaded function.

getCols

Return the number of columns of the 2D array.

insertStatic

Insert array B in array A at the given position.

save

Overloaded function.

reshape

getRows

Return the number of rows of the 2D array.

size

Return the number of elements of the 2D array.

getMinValue

Return the array min value.

getMaxValue

Return the array max value.

hadamard

param m:

Second matrix;

saveYAML

Save an array in a YAML-formatted file.

conv2

Overloaded function.

t

Compute the transpose of the array.

numpy

Numpy view of the underlying array data.

Operators

__doc__

__init__

Overloaded function.

__module__

__mul__

Overloaded function.

Attributes

__annotations__

__hash__

__eq__(*args, **kwargs)

Overloaded function.

  1. __eq__(self: visp._visp.core.ArrayDouble2D, A: visp._visp.core.ArrayDouble2D) -> bool

Equal to comparison operator of a 2D array.

  1. __eq__(self: visp._visp.core.ArrayDouble2D, A: visp._visp.core.ArrayDouble2D) -> bool

Equal to comparison operator of a 2D array.

  1. __eq__(self: visp._visp.core.ArrayDouble2D, A: visp._visp.core.ArrayDouble2D) -> bool

Equal to comparison operator of a 2D array.

__getitem__(*args, **kwargs)

Overloaded function.

  1. __getitem__(self: visp._visp.core.ArrayDouble2D, arg0: tuple[int, int]) -> float

  2. __getitem__(self: visp._visp.core.ArrayDouble2D, arg0: int) -> numpy.ndarray[numpy.float64]

  3. __getitem__(self: visp._visp.core.ArrayDouble2D, arg0: slice) -> numpy.ndarray[numpy.float64]

  4. __getitem__(self: visp._visp.core.ArrayDouble2D, arg0: tuple) -> numpy.ndarray[numpy.float64]

__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: visp._visp.core.VelocityTwistMatrix) -> None

Initialize a velocity twist transformation matrix as identity.

  1. __init__(self: visp._visp.core.VelocityTwistMatrix, V: visp._visp.core.VelocityTwistMatrix) -> None

Initialize a velocity twist transformation matrix from another velocity twist matrix.

Parameters:
V

Velocity twist matrix used as initializer.

  1. __init__(self: visp._visp.core.VelocityTwistMatrix, M: visp._visp.core.HomogeneousMatrix, full: bool = true) -> None

Initialize a velocity twist transformation matrix from an homogeneous matrix \(M\) with

\[\begin{split}{\bf M} = \left[\begin{array}{cc} {\bf R} & {\bf t} \\{\bf 0}_{1\times 3} & 1 \end{array} \right] \end{split}\]
Parameters:
M

Homogeneous matrix \(\bf M\) used to initialize the velocity twist transformation matrix.

full

Boolean used to indicate which matrix should be filled.

  • When set to true, use the complete velocity skew transformation :

    \[\begin{split}{\bf V} = \left[\begin{array}{cc} {\bf R} & [{\bf t}]_\times \; {\bf R} \\{\bf 0}_{3\times 3} & {\bf R} \end{array} \right] \end{split}\]
  • When set to false, use the block diagonal velocity skew transformation:

    \[\begin{split}{\bf V} = \left[\begin{array}{cc} {\bf R} & {\bf 0}_{3\times 3} \\{\bf 0}_{3\times 3} & {\bf R} \end{array} \right]\end{split}\]

  1. __init__(self: visp._visp.core.VelocityTwistMatrix, t: visp._visp.core.TranslationVector, R: visp._visp.core.RotationMatrix) -> None

Initialize a velocity twist transformation matrix from a translation vector t and a rotation matrix R .

\[\begin{split}{\bf V} = \left[\begin{array}{cc} {\bf R} & [{\bf t}]_\times \; {\bf R} \\{\bf 0}_{3\times 3} & {\bf R} \end{array} \right] \end{split}\]
Parameters:
t

Translation vector.

R

Rotation matrix.

  1. __init__(self: visp._visp.core.VelocityTwistMatrix, t: visp._visp.core.TranslationVector, thetau: visp._visp.core.ThetaUVector) -> None

Initialize a velocity twist transformation matrix from a translation vector t and a rotation vector with \(\theta u\) parametrization.

\[\begin{split}{\bf V} = \left[\begin{array}{cc} {\bf R} & [{\bf t}]_\times \; {\bf R} \\{\bf 0}_{3\times 3} & {\bf R} \end{array} \right] \end{split}\]
Parameters:
t

Translation vector.

thetau

math:theta u rotation vector used to initialize rotation vector \(R\) .

  1. __init__(self: visp._visp.core.VelocityTwistMatrix, tx: float, ty: float, tz: float, tux: float, tuy: float, tuz: float) -> None

Initialize a velocity twist transformation matrix from a translation vector \({\bf t}=(t_x, t_y, t_z)^T\) and a rotation vector with \(\theta {\bf u}=(\theta u_x, \theta u_y, \theta u_z)^T\) parametrization.

\[\begin{split}{\bf V} = \left[\begin{array}{cc} {\bf R} & [{\bf t}]_\times \; {\bf R} \\{\bf 0}_{3\times 3} & {\bf R} \end{array} \right] \end{split}\]
Parameters:
tx

Translation vector in meters.

ty

Translation vector in meters.

tz

Translation vector in meters.

tux

math:theta {bf u} rotation vector expressed in radians used to initialize \(R\) .

tuy

math:theta {bf u} rotation vector expressed in radians used to initialize \(R\) .

tuz

math:theta {bf u} rotation vector expressed in radians used to initialize \(R\) .

  1. __init__(self: visp._visp.core.VelocityTwistMatrix, R: visp._visp.core.RotationMatrix) -> None

Initialize a velocity twist transformation matrix from a rotation matrix R .

\[\begin{split}{\bf V} = \left[\begin{array}{cc} {\bf R} & {\bf 0}_{3\times 3} \\{\bf 0}_{3\times 3} & {\bf R} \end{array} \right] \end{split}\]
Parameters:
R

Rotation matrix.

  1. __init__(self: visp._visp.core.VelocityTwistMatrix, thetau: visp._visp.core.ThetaUVector) -> None

Initialize a velocity twist transformation matrix from a rotation vector with \(\theta u\) parametrization.

\[\begin{split}{\bf V} = \left[\begin{array}{cc} {\bf R} & {\bf 0}_{3\times 3}\\{\bf 0}_{3\times 3} & {\bf R} \end{array} \right] \end{split}\]
Parameters:
thetau

math:theta u rotation vector used to initialize rotation vector \(R\) .

__mul__(*args, **kwargs)

Overloaded function.

  1. __mul__(self: visp._visp.core.VelocityTwistMatrix, V: visp._visp.core.VelocityTwistMatrix) -> visp._visp.core.VelocityTwistMatrix

Operator that allows to multiply a velocity twist transformation matrix by an other velocity twist transformation matrix.

  1. __mul__(self: visp._visp.core.VelocityTwistMatrix, M: visp._visp.core.Matrix) -> visp._visp.core.Matrix

Operator that allows to multiply a velocity twist transformation matrix by a matrix.

As shown in the example below, this operator can be used to compute the corresponding camera velocity skew from the joint velocities knowing the robot jacobian.

#include <visp3/core/vpColVector.h>
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpVelocityTwistMatrix.h>
#include <visp3/robot/vpSimulatorCamera.h>

int main()
{
  vpSimulatorCamera robot;

  vpColVector q_vel(6); // Joint velocity on the 6 joints
  // ... q_vel need here to be initialized

  vpColVector c_v(6); // Velocity in the camera frame: vx,vy,vz,wx,wy,wz

  vpVelocityTwistMatrix cVe;  // Velocity skew transformation from camera frame to end-effector
  robot.get_cVe(cVe);

  vpMatrix eJe;       // Robot jacobian
  robot.get_eJe(eJe);

  // Compute the velocity in the camera frame
  c_v = cVe * eJe * q_vel;

  return 0;
}
  1. __mul__(self: visp._visp.core.VelocityTwistMatrix, v: visp._visp.core.ColVector) -> visp._visp.core.ColVector

Operator that allows to multiply a twist transformation matrix by a 6-dimension column vector.

Parameters:
v

Velocity skew vector.

__ne__(*args, **kwargs)

Overloaded function.

  1. __ne__(self: visp._visp.core.ArrayDouble2D, A: visp._visp.core.ArrayDouble2D) -> bool

Not equal to comparison operator of a 2D array.

  1. __ne__(self: visp._visp.core.ArrayDouble2D, A: visp._visp.core.ArrayDouble2D) -> bool

Not equal to comparison operator of a 2D array.

  1. __ne__(self: visp._visp.core.ArrayDouble2D, A: visp._visp.core.ArrayDouble2D) -> bool

Not equal to comparison operator of a 2D array.

buildFrom(*args, **kwargs)

Overloaded function.

  1. buildFrom(self: visp._visp.core.VelocityTwistMatrix, t: visp._visp.core.TranslationVector, R: visp._visp.core.RotationMatrix) -> visp._visp.core.VelocityTwistMatrix

Build a velocity twist transformation matrix from a translation vector t and a rotation matrix R .

\[\begin{split}{\bf V} = \left[\begin{array}{cc} {\bf R} & [{\bf t}]_\times \; {\bf R} \\{\bf 0}_{3\times 3} & {\bf R} \end{array} \right] \end{split}\]
Parameters:
t

Translation vector.

R

Rotation matrix.

  1. buildFrom(self: visp._visp.core.VelocityTwistMatrix, t: visp._visp.core.TranslationVector, thetau: visp._visp.core.ThetaUVector) -> visp._visp.core.VelocityTwistMatrix

Initialize a velocity twist transformation matrix from a translation vector t and a rotation vector with \(\theta u\) parametrization.

\[\begin{split}{\bf V} = \left[\begin{array}{cc} {\bf R} & [{\bf t}]_\times \; {\bf R} \\{\bf 0}_{3\times 3} & {\bf R} \end{array} \right] \end{split}\]
Parameters:
t

Translation vector.

thetau

math:theta {bf u} rotation vector used to create rotation matrix \({\bf R}\) .

  1. buildFrom(self: visp._visp.core.VelocityTwistMatrix, M: visp._visp.core.HomogeneousMatrix, full: bool = true) -> visp._visp.core.VelocityTwistMatrix

Initialize a velocity twist transformation matrix from an homogeneous matrix \(M\) with

\[\begin{split}{\bf M} = \left[\begin{array}{cc} {\bf R} & {\bf t} \\{\bf 0}_{1\times 3} & 1 \end{array} \right] \end{split}\]
Parameters:
M

Homogeneous matrix \(M\) used to initialize the velocity twist transformation matrix.

full

Boolean used to indicate which matrix should be filled.

  • When set to true, use the complete velocity skew transformation :

    \[\begin{split}{\bf V} = \left[\begin{array}{cc} {\bf R} & [{\bf t}]_\times \; {\bf R} \\{\bf 0}_{3\times 3} & {\bf R} \end{array} \right] \end{split}\]
  • When set to false, use the block diagonal velocity skew transformation:

    \[\begin{split}{\bf V} = \left[\begin{array}{cc} {\bf R} & {\bf 0}_{3\times 3} \\{\bf 0}_{3\times 3} & {\bf R} \end{array} \right]\end{split}\]

  1. buildFrom(self: visp._visp.core.VelocityTwistMatrix, R: visp._visp.core.RotationMatrix) -> visp._visp.core.VelocityTwistMatrix

Build a velocity twist transformation block diagonal matrix from a rotation matrix R.

\[\begin{split}{\bf V} = \left[\begin{array}{cc} {\bf R} & {\bf 0}_{3\times 3} \\{\bf 0}_{3\times 3} & {\bf R} \end{array} \right] \end{split}\]
Parameters:
R

Rotation matrix.

  1. buildFrom(self: visp._visp.core.VelocityTwistMatrix, thetau: visp._visp.core.ThetaUVector) -> visp._visp.core.VelocityTwistMatrix

Initialize a velocity twist transformation matrix from a rotation vector with \(\theta u\) parametrization.

\[\begin{split}{\bf V} = \left[\begin{array}{cc} {\bf R} & {\bf 0}_{3\times 3} \\{\bf 0}_{3\times 3} & {\bf R} \end{array} \right] \end{split}\]
Parameters:
thetau

math:theta {bf u} rotation vector used to create rotation matrix \({\bf R}\) .

static conv2(*args, **kwargs)

Overloaded function.

  1. conv2(M: visp._visp.core.ArrayDouble2D, kernel: visp._visp.core.ArrayDouble2D, mode: str) -> visp._visp.core.ArrayDouble2D

Perform a 2D convolution similar to Matlab conv2 function: \(M \star kernel\) .

<unparsed image <doxmlparser.compound.docImageType object at 0x7ff6a36292a0>>

Note

This is a very basic implementation that does not use FFT.

Parameters:
M

First matrix.

kernel

Second matrix.

mode

Convolution mode: “full” (default), “same”, “valid”.

  1. conv2(M: visp._visp.core.ArrayDouble2D, kernel: visp._visp.core.ArrayDouble2D, res: visp._visp.core.ArrayDouble2D, mode: str) -> None

Perform a 2D convolution similar to Matlab conv2 function: \(M \star kernel\) .

<unparsed image <doxmlparser.compound.docImageType object at 0x7ff6a362aec0>>

Note

This is a very basic implementation that does not use FFT.

Parameters:
M

First array.

kernel

Second array.

res

Result.

mode

Convolution mode: “full” (default), “same”, “valid”.

extract(*args, **kwargs)

Overloaded function.

  1. extract(self: visp._visp.core.VelocityTwistMatrix, R: visp._visp.core.RotationMatrix) -> None

Extract the rotation matrix from the velocity twist matrix.

  1. extract(self: visp._visp.core.VelocityTwistMatrix, t: visp._visp.core.TranslationVector) -> None

Extract the translation vector from the velocity twist matrix.

eye(self) None

Initialize a 6x6 velocity twist matrix as identity.

getCols(self) int

Return the number of columns of the 2D array.

Note

See getRows() , size()

getMaxValue(self) float

Return the array max value.

getMinValue(self) float

Return the array min value.

getRows(self) int

Return the number of rows of the 2D array.

Note

See getCols() , size()

hadamard(self, m: visp._visp.core.ArrayDouble2D) visp._visp.core.ArrayDouble2D
Parameters:
m: visp._visp.core.ArrayDouble2D

Second matrix;

Returns:

m1.hadamard(m2) The Hadamard product : \(m1 \circ m2 = (m1 \circ m2)_{i,j} = (m1)_{i,j} (m2)_{i,j}\)

insert(*args, **kwargs)

Overloaded function.

  1. insert(self: visp._visp.core.ArrayDouble2D, A: visp._visp.core.ArrayDouble2D, r: int, c: int) -> None

Insert array A at the given position in the current array.

Warning

Throw vpException::dimensionError if the dimensions of the matrices do not allow the operation.

Parameters:
A

The array to insert.

r

The index of the row to begin to insert data.

c

The index of the column to begin to insert data.

  1. insert(self: visp._visp.core.ArrayDouble2D, A: visp._visp.core.ArrayDouble2D, B: visp._visp.core.ArrayDouble2D, r: int, c: int) -> visp._visp.core.ArrayDouble2D

Insert array B in array A at the given position.

Warning

Throw exception if the sizes of the arrays do not allow the insertion.

Parameters:
A

Main array.

B

Array to insert.

r

Index of the row where to add the array.

c

Index of the column where to add the array.

Returns:

Array with B insert in A.

static insertStatic(A: visp._visp.core.ArrayDouble2D, B: visp._visp.core.ArrayDouble2D, C: visp._visp.core.ArrayDouble2D, r: int, c: int) None

Insert array B in array A at the given position.

Warning

Throw exception if the sizes of the arrays do not allow the insertion.

Parameters:
A: visp._visp.core.ArrayDouble2D

Main array.

B: visp._visp.core.ArrayDouble2D

Array to insert.

C: visp._visp.core.ArrayDouble2D

Result array.

r: int

Index of the row where to insert array B.

c: int

Index of the column where to insert array B.

inverse(*args, **kwargs)

Overloaded function.

  1. inverse(self: visp._visp.core.VelocityTwistMatrix) -> visp._visp.core.VelocityTwistMatrix

Invert the velocity twist matrix.

  1. inverse(self: visp._visp.core.VelocityTwistMatrix, V: visp._visp.core.VelocityTwistMatrix) -> None

Invert the velocity twist matrix.

numpy(self) numpy.ndarray[numpy.float64]

Numpy view of the underlying array data. This numpy view can be used to directly modify the array.

print(self: visp._visp.core.VelocityTwistMatrix, s: std::ostream, length: int, intro: str = 0) int

Pretty print a velocity twist matrix. The data are tabulated. The common widths before and after the decimal point are set with respect to the parameter maxlen.

Note

See std::ostream & operator<<(std::ostream &s, const vpArray2D<Type> &A)

Parameters:
s

Stream used for the printing.

length

The suggested width of each matrix element. The actual width grows in order to accommodate the whole integral part, and shrinks if the whole extent is not needed for all the numbers.

intro

The introduction which is printed before the matrix. Can be set to zero (or omitted), in which case the introduction is not printed.

Returns:

Returns the common total width for all matrix elements

reshape(self, nrows: int, ncols: int) None
resize(*args, **kwargs)

Overloaded function.

  1. resize(self: visp._visp.core.VelocityTwistMatrix, nrows: int, ncols: int, flagNullify: bool = true) -> None

This function is not applicable to a velocity twist matrix that is always a 6-by-6 matrix.

  1. resize(self: visp._visp.core.ArrayDouble2D, nrows: int, ncols: int, flagNullify: bool = true, recopy_: bool = true) -> None

Set the size of the array and initialize all the values to zero.

Parameters:
nrows

number of rows.

ncols

number of column.

flagNullify

if true, then the array is re-initialized to 0 after resize. If false, the initial values from the common part of the array (common part between old and new version of the array) are kept. Default value is true.

recopy_

if true, will perform an explicit recopy of the old data.

static save(*args, **kwargs)

Overloaded function.

  1. save(filename: str, A: visp._visp.core.ArrayDouble2D, binary: bool = false, header: str = ) -> bool

Save a matrix to a file.

Warning : If you save the matrix as in a text file the precision is less than if you save it in a binary file.

Note

See load()

Parameters:
filename

Absolute file name.

A

Array to be saved.

binary

If true the matrix is saved in a binary file, else a text file.

header

Optional line that will be saved at the beginning of the file.

Returns:

Returns true if success.

  1. save(filename: str, A: visp._visp.core.ArrayDouble2D, binary: bool = false, header: str = ) -> bool

Save a matrix to a file.

Warning : If you save the matrix as in a text file the precision is less than if you save it in a binary file.

Note

See load()

Parameters:
filename

Absolute file name.

A

Array to be saved.

binary

If true the matrix is saved in a binary file, else a text file.

header

Optional line that will be saved at the beginning of the file.

Returns:

Returns true if success.

  1. save(filename: str, A: visp._visp.core.ArrayDouble2D, binary: bool = false, header: str = ) -> bool

Save a matrix to a file.

Warning : If you save the matrix as in a text file the precision is less than if you save it in a binary file.

Note

See load()

Parameters:
filename

Absolute file name.

A

Array to be saved.

binary

If true the matrix is saved in a binary file, else a text file.

header

Optional line that will be saved at the beginning of the file.

Returns:

Returns true if success.

static saveYAML(filename: str, A: visp._visp.core.ArrayDouble2D, header: str =) bool

Save an array in a YAML-formatted file.

Here is an example of outputs.

vpArray2D<double> M(3,4);
vpArray2D::saveYAML("matrix.yml", M, "example: a YAML-formatted header");
vpArray2D::saveYAML("matrixIndent.yml", M, "example:\n    - a YAML-formatted \
header\n    - with inner indentation");

Content of matrix.yml:

example: a YAML-formatted header
rows: 3
cols: 4
data:
  - [0, 0, 0, 0]
  - [0, 0, 0, 0]
  - [0, 0, 0, 0]

Content of matrixIndent.yml:

example:
    - a YAML-formatted header
    - with inner indentation
rows: 3
cols: 4
data:
    - [0, 0, 0, 0]
    - [0, 0, 0, 0]
    - [0, 0, 0, 0]

Note

See loadYAML()

Parameters:
filename

absolute file name.

A

array to be saved in the file.

header

optional lines that will be saved at the beginning of the file. Should be YAML-formatted and will adapt to the indentation if any.

Returns:

Returns true if success.

size(self) int

Return the number of elements of the 2D array.

t(self) visp._visp.core.ArrayDouble2D

Compute the transpose of the array.

Returns:

vpArray2D<Type> C = A^T

__hash__ = None