SubColVector

class SubColVector(*args, **kwargs)

Bases: ColVector

This class provides a mask on a vpColVector . It has internally a pointer to the parent vpColVector . All properties of vpColVector are available with a vpSubColVector .

Note

See vpMatrix vpColVector vpRowVector

Overloaded function.

  1. __init__(self: visp._visp.core.SubColVector) -> None

Default constructor that creates an empty vector.

  1. __init__(self: visp._visp.core.SubColVector, v: visp._visp.core.ColVector, offset: int, nrows: int) -> None

Construct a sub-column vector from a parent column vector.

Parameters:
v

parent column vector.

offset

offset where the sub-column vector starts in the parent column vector.

nrows

size of the sub-column vector.

Methods

__init__

Overloaded function.

checkParentStatus

This method can be used to detect if the parent column vector always exits or its size have not changed.

init

Overloaded function.

Inherited Methods

resize

Overloaded function.

cross

Compute and return the cross product of two 3-dimension vectors: \(a \times b\) .

getRows

Return the number of rows of the 2D array.

conv2

Overloaded function.

getMaxValue

stack

Overloaded function.

sum

Return the sum of all the elements \(v_{i}\) of the column vector \(\bf v\) that is of dimension \(m\) .

invSort

Return a column vector with elements of v that are reverse sorted with values going from greatest to lowest.

strMaple

Returns the CSV representation of this data array (see maplePrint in the C++ documentation)

print

Pretty print a column vector.

saveYAML

getCols

Return the number of columns of the 2D array.

skew

Compute the skew symmetric matrix \([{\bf v}]_\times\) of vector v.

stackVectors

Overloaded function.

size

Return the number of elements of the 2D array.

rad2deg

Note

See deg2rad()

sort

Return a column vector with elements of v that are sorted with values going from lowest to greatest.

toStdVector

return:

The corresponding std::vector<double>.

hadamard

Overloaded function.

view

Construct a column vector that is a view of a numpy array.

reshape

Overloaded function.

stdev

Compute the standard deviation value of all the elements of the vector.

sumSquare

Return the sum of squares of all the elements \(v_{i}\) of the column vector \(\bf v\) that is of dimension \(m\) .

normalize

Overloaded function.

insertStatic

save

Overloaded function.

t

Overloaded function.

clear

Removes all elements from the vector (which are destroyed), leaving the container with a size of 0.

mean

Compute the mean value of all the elements of the vector.

median

Compute the median value of all the elements of the vector.

deg2rad

Converts a column vector containing angles in degrees into radians and returns a reference to the vector.

strCppCode

Returns a C++ code representation of this data array (see cppPrint in the C++ documentation)

crossProd

Compute and return the cross product of two vectors \(a \times b\) .

frobeniusNorm

Compute and return the Frobenius norm \(||v|| = \sqrt{ \sum_{v_{i}^2}}\) of all the elements \(v_{i}\) of the column vector \(\bf v\) that is of dimension \(m\) .

insert

Overloaded function.

strMatlab

Returns the Matlab representation of this data array (see matlabPrint in the C++ documentation)

transpose

Overloaded function.

getMinValue

dotProd

Compute end return the dot product of two column vectors:

numpy

Numpy view of the underlying array data.

extract

Extract a sub-column vector from a column vector.

infinityNorm

Compute and return the infinity norm \({||v||}_{\infty} = max\left({\mid v_{i} \mid}\right)\) with \(i \in \{0, ..., m-1\}\) where m is the vector size and \(v_i\) an element of the vector.

strCsv

Returns the CSV representation of this data array (see csvPrint in the C++ documentation)

Operators

__doc__

__init__

Overloaded function.

__module__

Attributes

__annotations__

__hash__

__add__(*args, **kwargs)

Overloaded function.

  1. __add__(self: visp._visp.core.ColVector, v: visp._visp.core.ColVector) -> visp._visp.core.ColVector

Operator that allows to add two column vectors.

  1. __add__(self: visp._visp.core.ColVector, t: visp._visp.core.TranslationVector) -> visp._visp.core.TranslationVector

Operator that allows to add a column vector to a translation vector.

Parameters:
t

3-dimension translation vector to add.

Returns:

The sum of the current column vector (*this) and the translation vector to add.

vpTranslationVector t1(1,2,3);
vpColVector v(3);
v[0] = 4;
v[1] = 5;
v[2] = 6;
vpTranslationVector t2;

t2 = v + t1;
// t1 and v leave unchanged
// t2 is now equal to : 5, 7, 9
__eq__(*args, **kwargs)

Overloaded function.

  1. __eq__(self: visp._visp.core.ColVector, v: visp._visp.core.ColVector) -> bool

Compare two column vectors.

Parameters:
v

Vector to compare with.

Returns:

true when their respective size and their respective values are the same, false when their size or values differ.

  1. __eq__(self: visp._visp.core.ColVector, v: float) -> bool

Compare a column vector to a floating point value.

Parameters:
v

Floating point value to compare with.

Returns:

true when all the values of the vector are equal to the floating point value v , false otherwise.

__getitem__(*args, **kwargs)

Overloaded function.

  1. __getitem__(self: visp._visp.core.ColVector, arg0: int) -> float

  2. __getitem__(self: visp._visp.core.ColVector, arg0: slice) -> numpy.ndarray[numpy.float64]

__iadd__(self, v: visp._visp.core.ColVector) visp._visp.core.ColVector

Operator that allows to add two column vectors.

__imul__(self, x: float) visp._visp.core.ColVector

Operator that allows to multiply each element of a column vector by a scalar.

vpColVector v(3);
v[0] = 1;
v[1] = 2;
v[2] = 3;

v *= 3;
// v is now equal to : [3, 6, 9]
Parameters:
x: float

The scalar.

Returns:

The column vector multiplied by the scalar.

__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: visp._visp.core.SubColVector) -> None

Default constructor that creates an empty vector.

  1. __init__(self: visp._visp.core.SubColVector, v: visp._visp.core.ColVector, offset: int, nrows: int) -> None

Construct a sub-column vector from a parent column vector.

Parameters:
v

parent column vector.

offset

offset where the sub-column vector starts in the parent column vector.

nrows

size of the sub-column vector.

__isub__(self, v: visp._visp.core.ColVector) visp._visp.core.ColVector

Operator that allows to subtract two column vectors.

__itruediv__(self, x: float) visp._visp.core.ColVector

Operator that allows to divide each element of a column vector by a scalar.

vpColVector v(3);
v[0] = 8;
v[1] = 4;
v[2] = 2;

v /= 2;
// v is now equal to : [4, 2, 1]
Parameters:
x: float

The scalar.

Returns:

The column vector divided by the scalar.

__mul__(*args, **kwargs)

Overloaded function.

  1. __mul__(self: visp._visp.core.ColVector, v: visp._visp.core.ColVector) -> float

Operator that performs the dot product between two column vectors.

Note

See dotProd()

  1. __mul__(self: visp._visp.core.ColVector, v: visp._visp.core.RowVector) -> visp._visp.core.Matrix

Multiply a column vector by a row vector.

Parameters:
v

Row vector.

Returns:

The resulting matrix.

  1. __mul__(self: visp._visp.core.ColVector, M: visp._visp.core.Matrix) -> visp._visp.core.Matrix

Multiply a column vector by a matrix.

Parameters:
M

Matrix.

Returns:

The resulting matrix.

  1. __mul__(self: visp._visp.core.ColVector, x: float) -> visp._visp.core.ColVector

Operator that allows to multiply each element of a column vector by a scalar.

vpColVector v(3);
v[0] = 1;
v[1] = 2;
v[2] = 3;

vpColVector w = v * 3;
// v is unchanged
// w is now equal to : [3, 6, 9]
Parameters:
x

The scalar.

Returns:

The column vector multiplied by the scalar. The current column vector (*this) is unchanged.

__ne__(*args, **kwargs)

Overloaded function.

  1. __ne__(self: visp._visp.core.ColVector, v: visp._visp.core.ColVector) -> bool

Compare two column vectors.

Parameters:
v

Vector to compare with.

Returns:

true when their respective size or their values differ, false when their size and values are the same.

  1. __ne__(self: visp._visp.core.ColVector, v: float) -> bool

Compare a column vector to a floating point value.

Parameters:
v

Floating point value to compare with.

Returns:

true when at least one value of the vector differ from the floating point value v . false when all the vector values are equal to v .

__neg__(self) visp._visp.core.ColVector

Operator that allows to negate all the column vector elements.

vpColVector r(3, 1);
// r contains [1 1 1]^T
vpColVector v = -r;
// v contains [-1 -1 -1]^T
__setitem__(*args, **kwargs)

Overloaded function.

  1. __setitem__(self: visp._visp.core.ColVector, arg0: int, arg1: float) -> None

  2. __setitem__(self: visp._visp.core.ColVector, arg0: slice, arg1: float) -> None

  3. __setitem__(self: visp._visp.core.ColVector, arg0: slice, arg1: numpy.ndarray[numpy.float64]) -> None

__sub__(self, v: visp._visp.core.ColVector) visp._visp.core.ColVector

Operator subtraction of two vectors this = this - v

__truediv__(self, x: float) visp._visp.core.ColVector

Operator that allows to divide each element of a column vector by a scalar.

vpColVector v(3);
v[0] = 8;
v[1] = 4;
v[2] = 2;

vpColVector w = v / 2;
// v is unchanged
// w is now equal to : [4, 2, 1]
Parameters:
x: float

The scalar.

Returns:

The column vector divided by the scalar. The current column vector (*this) is unchanged.

checkParentStatus(self) None

This method can be used to detect if the parent column vector always exits or its size have not changed. If this not the case an exception is thrown.

clear(self) None

Removes all elements from the vector (which are destroyed), leaving the container with a size of 0.

static conv2(*args, **kwargs)

Overloaded function.

  1. conv2(M: visp._visp.core.ArrayDouble2D, kernel: visp._visp.core.ArrayDouble2D, mode: str) -> visp._visp.core.ArrayDouble2D

  2. conv2(M: visp._visp.core.ArrayDouble2D, kernel: visp._visp.core.ArrayDouble2D, res: visp._visp.core.ArrayDouble2D, mode: str) -> None

  3. conv2(M: visp._visp.core.ArrayDouble2D, kernel: visp._visp.core.ArrayDouble2D, mode: str) -> visp._visp.core.ArrayDouble2D

  4. conv2(M: visp._visp.core.ArrayDouble2D, kernel: visp._visp.core.ArrayDouble2D, res: visp._visp.core.ArrayDouble2D, mode: str) -> None

static cross(a: visp._visp.core.ColVector, b: visp._visp.core.ColVector) visp._visp.core.ColVector

Compute and return the cross product of two 3-dimension vectors: \(a \times b\) .

Note

See crossProd() , dotProd() , operator*(const vpColVector &)

Parameters:
a: visp._visp.core.ColVector

3-dimension column vector.

b: visp._visp.core.ColVector

3-dimension column vector.

Returns:

The cross product \(a \times b\) .

static crossProd(a: visp._visp.core.ColVector, b: visp._visp.core.ColVector) visp._visp.core.ColVector

Compute and return the cross product of two vectors \(a \times b\) .

Note

See dotProd()

Parameters:
a: visp._visp.core.ColVector

3-dimension column vector.

b: visp._visp.core.ColVector

3-dimension column vector.

Returns:

The cross product \(a \times b\) .

deg2rad(self) visp._visp.core.ColVector

Converts a column vector containing angles in degrees into radians and returns a reference to the vector.

Note

See rad2deg()

Returns:

A reference to the vector with values expressed in [rad].

static dotProd(a: visp._visp.core.ColVector, b: visp._visp.core.ColVector) float

Compute end return the dot product of two column vectors:

\[a \cdot b = \sum_{i=0}^n a_i * b_i\]

where n is the dimension of both vectors.

Note

See cross() , crossProd()

extract(self, r: int, colsize: int) visp._visp.core.ColVector

Extract a sub-column vector from a column vector.

vpColVector v1;
for (unsigned int i=0; i<4; ++i)
  v1.stack(i);
// v1 is equal to [0 1 2 3]^T
vpColVector v2 = v1.extract(1, 3);
// v2 is equal to [1 2 3]^T
Parameters:
r: int

Index of the row corresponding to the first element of the vector to extract.

colsize: int

Size of the vector to extract.

frobeniusNorm(self) float

Compute and return the Frobenius norm \(||v|| = \sqrt{ \sum_{v_{i}^2}}\) of all the elements \(v_{i}\) of the column vector \(\bf v\) that is of dimension \(m\) .

Note

See infinityNorm()

Returns:

The Frobenius norm if the vector is initialized, 0 otherwise.

getCols(self) int

Return the number of columns of the 2D array.

Note

See getRows() , size()

getMaxValue(self) float
getMinValue(self) float
getRows(self) int

Return the number of rows of the 2D array.

Note

See getCols() , size()

hadamard(*args, **kwargs)

Overloaded function.

  1. hadamard(self: visp._visp.core.ColVector, v: visp._visp.core.ColVector) -> visp._visp.core.ColVector

Compute the Hadamard product (element wise vector multiplication).

Parameters:
v

Second vector;

Returns:

v1.hadamard(v2) The kronecker product : \(v1 \circ v2 = (v1 \circ v2)_{i} = (v1)_{i} (v2)_{i}\)

  1. hadamard(self: visp._visp.core.ArrayDouble2D, m: visp._visp.core.ArrayDouble2D) -> visp._visp.core.ArrayDouble2D

infinityNorm(self) float

Compute and return the infinity norm \({||v||}_{\infty} = max\left({\mid v_{i} \mid}\right)\) with \(i \in \{0, ..., m-1\}\) where m is the vector size and \(v_i\) an element of the vector.

Note

See frobeniusNorm()

Returns:

The infinity norm if the matrix is initialized, 0 otherwise.

init(*args, **kwargs)

Overloaded function.

  1. init(self: visp._visp.core.SubColVector, v: visp._visp.core.ColVector, offset: int, nrows: int) -> None

Initialize a sub-column vector from a parent column vector.

Parameters:
v

parent column vector.

offset

offset where the sub-column vector starts in the parent column vector.

nrows

size of the sub-column vector.

  1. init(self: visp._visp.core.ColVector, v: visp._visp.core.ColVector, r: int, nrows: int) -> None

Initialize the column vector from a part of an input column vector v .

The sub-vector starting from v[r] element and ending on v[r+nrows-1] element is used to initialize the constructed column vector.

The following code shows how to use this function:

#include <visp3/core/vpColVector.h>

#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif

int main()
{
  vpColVector v(4);
  int val = 0;
  for(size_t i=0; i<v.getRows(); ++i) {
    v[i] = val++;
  }
  std::cout << "v: " << v.t() << std::endl;

  vpColVector w;
  w.init(v, 0, 2);
  std::cout << "w: " << w.t() << std::endl;
}

It produces the following output:

v: 0 1 2 3
w: 1 2
Parameters:
v

Input column vector used for initialization.

r

row index in v that corresponds to the first element of the column vector to construct.

nrows

Number of rows of the constructed column vector.

insert(*args, **kwargs)

Overloaded function.

  1. insert(self: visp._visp.core.ColVector, i: int, v: visp._visp.core.ColVector) -> None

Insert a column vector.The following example shows how to use this function:

#include <visp3/core/vpColVector.h>

#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif

int main()
{
  vpColVector v(4);
  for (unsigned int i=0; i < v.size(); ++i)
    v[i] = i;
  std::cout << "v: " << v.t() << std::endl;

  vpColVector w(2);
  for (unsigned int i=0; i < w.size(); ++i)
    w[i] = i+10;
  std::cout << "w: " << w.t() << std::endl;

  v.insert(1, w);
  std::cout << "v: " << v.t() << std::endl;
}

It produces the following output:

v: 0 1 2 3
w: 10 11
v: 0 10 11 3
Parameters:
i

Index of the first element to introduce. This index starts from 0.

v

Column vector to insert.

  1. insert(self: visp._visp.core.ArrayDouble2D, A: visp._visp.core.ArrayDouble2D, r: int, c: int) -> None

  2. insert(self: visp._visp.core.ArrayDouble2D, A: visp._visp.core.ArrayDouble2D, B: visp._visp.core.ArrayDouble2D, r: int, c: int) -> visp._visp.core.ArrayDouble2D

static insertStatic(A: visp._visp.core.ArrayDouble2D, B: visp._visp.core.ArrayDouble2D, C: visp._visp.core.ArrayDouble2D, r: int, c: int) None
static invSort(v: visp._visp.core.ColVector) visp._visp.core.ColVector

Return a column vector with elements of v that are reverse sorted with values going from greatest to lowest.

Example:

#include <visp3/core/vpColVector.h>

#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif

int main()
{
  vpColVector v(10);
  v[0] = 5; v[1] = 7; v[2] = 4; v[3] = 2; v[4] = 8;
  v[5] = 6; v[6] = 1; v[7] = 9; v[8] = 0; v[9] = 3;

  std::cout << "v: " << v.t() << std::endl;

  vpColVector s = vpColVector::invSort(v);
  std::cout << "s: " << s.t() << std::endl;
}

Output:

v: 5  7  4  2  8  6  1  9  0  3
s: 9  8  7  6  5  4  3  2  1  0

Note

See sort()

static mean(v: visp._visp.core.ColVector) float

Compute the mean value of all the elements of the vector.

static median(v: visp._visp.core.ColVector) float

Compute the median value of all the elements of the vector.

normalize(*args, **kwargs)

Overloaded function.

  1. normalize(self: visp._visp.core.ColVector) -> visp._visp.core.ColVector

Normalize the column vector.

Considering the n-dim column vector \({\bf x} = (x_0, x_1, \ldots, n_{n-1})\) normalize each vector element \(i\) :

\[x_i = \frac{x_i}{\sqrt{\sum_{i=0}^{n-1}x^2_i}} \]
Returns:

A reference to the normalized vector.

  1. normalize(self: visp._visp.core.ColVector, x: visp._visp.core.ColVector) -> visp._visp.core.ColVector

Normalize a column vector.

Considering the n-dim column vector \({\bf x} = (x_0, x_1, \ldots, n_{n-1})\) normalize each vector element \(i\) :

\[x_i = \frac{x_i}{\sqrt{\sum_{i=0}^{n-1} x^2_i}} \]
Parameters:
x

As input, the vector to normalize, as output the normalized vector.

Returns:

A reference to the normalized vector.

numpy(self) numpy.ndarray[numpy.float64]

Numpy view of the underlying array data. This numpy view can be used to directly modify the array.

print(self: visp._visp.core.ColVector, s: std::ostream, length: int, intro: str = 0) int

Pretty print a column vector. The data are tabulated. The common widths before and after the decimal point are set with respect to the parameter maxlen.

Note

See std::ostream & operator<<(std::ostream &s, const vpArray2D<Type> &A)

Parameters:
s

Stream used for the printing.

length

The suggested width of each vector element. The actual width grows in order to accommodate the whole integral part, and shrinks if the whole extent is not needed for all the numbers.

intro

The introduction which is printed before the vector. Can be set to zero (or omitted), in which case the introduction is not printed.

Returns:

Returns the common total width for all vector elements.

rad2deg(self) visp._visp.core.ColVector

Note

See deg2rad()

Returns:

A reference to the vector with values expressed in [deg].

reshape(*args, **kwargs)

Overloaded function.

  1. reshape(self: visp._visp.core.ColVector, M: visp._visp.core.Matrix, nrows: int, ncols: int) -> None

Reshape the column vector in a matrix.

The following example shows how to use this method.

#include <visp3/core/vpColVector.h>

#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif

int main()
{
  int var=0;
  vpMatrix mat(3, 4);
  for (int i = 0; i < 3; ++i)
    for (int j = 0; j < 4; ++j)
      mat[i][j] = ++var;
  std::cout << "mat: \n" << mat << std::endl;

  vpColVector col = mat.stackColumns();
  std::cout << "column vector: \n" << col << std::endl;

  vpMatrix remat = col.reshape(3, 4);
  std::cout << "remat: \n" << remat << std::endl;
}

If you run the previous example, you get:

mat:
1  2  3  4
5  6  7  8
9  10  11  12
column vector:
1
5
9
2
6
10
3
7
11
4
8
12
remat:
1  2  3  4
5  6  7  8
9  10  11  12
Parameters:
M

the reshaped matrix.

nrows

number of rows of the matrix.

ncols

number of columns of the matrix.

  1. reshape(self: visp._visp.core.ColVector, nrows: int, ncols: int) -> visp._visp.core.Matrix

Reshape the column vector in a matrix.

Note

See reshape(vpMatrix &, const unsigned int &, const unsigned int &)

Parameters:
nrows

number of rows of the matrix

ncols

number of columns of the matrix

Returns:

The reshaped matrix.

  1. reshape(self: visp._visp.core.ArrayDouble2D, nrows: int, ncols: int) -> None

resize(*args, **kwargs)

Overloaded function.

  1. resize(self: visp._visp.core.ColVector, i: int, flagNullify: bool = true) -> None

Modify the size of the column vector.

Parameters:
i

Size of the vector. This value corresponds to the vector number of rows.

flagNullify

If true, set the data to zero.

  1. resize(self: visp._visp.core.ColVector, nrows: int, ncols: int, flagNullify: bool) -> None

Resize the column vector to a nrows-dimension vector. This function can only be used with ncols = 1.

Parameters:
nrows

Vector number of rows. This value corresponds to the size of the vector.

ncols

Vector number of columns. This value should be set to 1.

flagNullify

If true, set the data to zero.

  1. resize(self: visp._visp.core.ArrayDouble2D, nrows: int, ncols: int, flagNullify: bool = true, recopy_: bool = true) -> None

Set the size of the array and initialize all the values to zero.

Parameters:
nrows

number of rows.

ncols

number of column.

flagNullify

if true, then the array is re-initialized to 0 after resize. If false, the initial values from the common part of the array (common part between old and new version of the array) are kept. Default value is true.

recopy_

if true, will perform an explicit recopy of the old data.

static save(*args, **kwargs)

Overloaded function.

  1. save(filename: str, A: visp._visp.core.ArrayDouble2D, binary: bool = false, header: str = ) -> bool

  2. save(filename: str, A: visp._visp.core.ArrayDouble2D, binary: bool = false, header: str = ) -> bool

  3. save(filename: str, A: visp._visp.core.ArrayDouble2D, binary: bool = false, header: str = ) -> bool

static saveYAML(filename: str, A: visp._visp.core.ArrayDouble2D, header: str =) bool
size(self) int

Return the number of elements of the 2D array.

static skew(v: visp._visp.core.ColVector) visp._visp.core.Matrix

Compute the skew symmetric matrix \([{\bf v}]_\times\) of vector v.

\[\begin{split}\mbox{if} \quad {\bf v} = \left( \begin{array}{c} x \\y \\z \end{array}\right), \quad \mbox{then} \qquad [{\bf v}]_\times = \left( \begin{array}{ccc} 0 & -z & y \\z & 0 & -x \\-y & x & 0 \end{array}\right) \end{split}\]
Parameters:
v: visp._visp.core.ColVector

Input vector used to compute the skew symmetric matrix.

static sort(v: visp._visp.core.ColVector) visp._visp.core.ColVector

Return a column vector with elements of v that are sorted with values going from lowest to greatest.

Example:

#include <visp3/core/vpColVector.h>

#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif

int main()
{
  vpColVector v(10);
  v[0] = 5; v[1] = 7; v[2] = 4; v[3] = 2; v[4] = 8;
  v[5] = 6; v[6] = 1; v[7] = 9; v[8] = 0; v[9] = 3;

  std::cout << "v: " << v.t() << std::endl;

  vpColVector s = vpColVector::sort(v);
  std::cout << "s: " << s.t() << std::endl;
}

Output:

v: 5  7  4  2  8  6  1  9  0  3
s: 0  1  2  3  4  5  6  7  8  9

Note

See invSort()

stack(*args, **kwargs)

Overloaded function.

  1. stack(self: visp._visp.core.ColVector, d: float) -> None

Stack column vector with a new element at the end of the vector.

vpColVector v(3, 1);
// v is equal to [1 1 1]^T
v.stack(-2);
// v is equal to [1 1 1 -2]^T

Note

See stack(const vpColVector &, const vpColVector &)

Note

See stack(const vpColVector &, const vpColVector &, vpColVector &)

Parameters:
d

Element to stack to the existing vector.

  1. stack(self: visp._visp.core.ColVector, v: visp._visp.core.ColVector) -> None

Stack column vectors.

vpColVector v1(3, 1);
// v1 is equal to [1 1 1]^T
vpColVector v2(2, 3);
// v2 is equal to [3 3]^T
v1.stack(v2);
// v1 is equal to [1 1 1 3 3]^T

Note

See stack(const vpColVector &, const double &)

Note

See stack(const vpColVector &, const vpColVector &)

Note

See stack(const vpColVector &, const vpColVector &, vpColVector &)

Parameters:
v

Vector to stack to the existing one.

static stackVectors(*args, **kwargs)

Overloaded function.

  1. stackVectors(A: visp._visp.core.ColVector, B: visp._visp.core.ColVector) -> visp._visp.core.ColVector

Stack column vectors.

vpColVector A(3);
vpColVector B(5);
vpColVector C;
C = vpColVector::stack(A, B); // C = [A B]T
// C is now an 8 dimension column vector

Note

See stack(const vpColVector &)

Note

See stack(const vpColVector &, const vpColVector &, vpColVector &)

Parameters:
A

Initial vector.

B

Vector to stack at the end of A.

Returns:

Stacked vector \([A B]^T\) .

  1. stackVectors(A: visp._visp.core.ColVector, B: visp._visp.core.ColVector, C: visp._visp.core.ColVector) -> None

Stack column vectors.

vpColVector  A(3);
vpColVector  B(5);
vpColVector  C;
vpColVector::stack (A, B, C); // C = [A B]T
// C is now an 8 dimension column vector

Note

See stack(const vpColVector &)

Note

See stack(const vpColVector &, const vpColVector &)

Parameters:
A

Initial vector.

B

Vector to stack at the end of A.

C

Resulting stacked vector \(C = [A B]^T\) .

static stdev(v: visp._visp.core.ColVector, useBesselCorrection: bool = false) float

Compute the standard deviation value of all the elements of the vector.

strCppCode(self, name: str, byte_per_byte: bool = False) str

Returns a C++ code representation of this data array (see cppPrint in the C++ documentation)

Parameters:
name: str

variable name of the matrix.

byte_per_byte: bool = False

Whether to print byte per byte defaults to false.

strCsv(self) str

Returns the CSV representation of this data array (see csvPrint in the C++ documentation)

strMaple(self) str

Returns the CSV representation of this data array (see maplePrint in the C++ documentation)

strMatlab(self) str

Returns the Matlab representation of this data array (see matlabPrint in the C++ documentation)

sum(self) float

Return the sum of all the elements \(v_{i}\) of the column vector \(\bf v\) that is of dimension \(m\) .

Returns:

The value

\[\sum_{i=0}^{m-1} v_i \]

.

sumSquare(self) float

Return the sum of squares of all the elements \(v_{i}\) of the column vector \(\bf v\) that is of dimension \(m\) .

Returns:

The value

\[\sum_{i=0}^{m-1} v_i^{2}\]

.

t(*args, **kwargs)

Overloaded function.

  1. t(self: visp._visp.core.ColVector) -> visp._visp.core.RowVector

Transpose the column vector. The resulting vector becomes a row vector.

  1. t(self: visp._visp.core.ArrayDouble2D) -> visp._visp.core.ArrayDouble2D

toStdVector(self) list[float]
Returns:

The corresponding std::vector<double>.

transpose(*args, **kwargs)

Overloaded function.

  1. transpose(self: visp._visp.core.ColVector) -> visp._visp.core.RowVector

Transpose the column vector. The resulting vector becomes a row vector.

Note

See t()

  1. transpose(self: visp._visp.core.ColVector, v: visp._visp.core.RowVector) -> None

Transpose the column vector. The resulting vector v becomes a row vector.

Note

See t()

static view(np_array: numpy.ndarray[numpy.float64]) visp._visp.core.ColVector

Construct a column vector that is a view of a numpy array. When it is modified, the numpy array is also modified. It cannot be resized.

Parameters:
np_array: numpy.ndarray[numpy.float64]

The numpy array to copy.

__hash__ = None