TemplateTrackerWarpHomography¶
- class TemplateTrackerWarpHomography(self)¶
Bases:
TemplateTrackerWarp
This class consider the homography warping model \(M\) with parameters \(p=(h_1, h_2, h_3, h_4, h_5, h_6, h_7, h_8)\) such as
\[\begin{split}M(p) = \left[ \begin{array}{ccc} h_1 + 1 & h_4 & h_7 \\h_2 & h_5 + 1 & h_8 \\h_3 & h_6 & 1 \end{array} \right] \end{split}\]We recall that u axis is the image horizontal axis, and v axis is the image vertical axis. A point (u,v) with coordinates (0,0) is located in the top left image corner.
Construct an homography model with 8 parameters initialized to zero.
Methods
Construct an homography model with 8 parameters initialized to zero.
Compute the projection denominator (Z) used in x = X/Z and y = Y/Z.
Compute the derivative matrix of the warping function at point \(X=(u,v)\) according to the model parameters:
- return:
Corresponding homography.
Overloaded function.
Compute inverse of the warping transformation.
Get the parameters of the warping function one level down where image size is divided by two along the lines and the columns.
Get the parameters of the warping function one level up where image size is multiplied by two along the lines and the columns.
- return:
false. Homography model is not compatible with ESM.
Compute the transformation resulting from the composition of two other transformations.
Overloaded function.
Warp a point X1 with the inverse transformation \(M\) .
Inherited Methods
Compute the distance between a zone and its associated warped zone.
Warp a zone and store the result in a new zone.
Warp a triangle and store the result in a new zone.
Get the number of parameters of the warping function.
Set the number of parameters of the warping function.
Operators
__doc__
Construct an homography model with 8 parameters initialized to zero.
__module__
Attributes
__annotations__
- __init__(self)¶
Construct an homography model with 8 parameters initialized to zero.
- computeDenom(self, X: visp._visp.core.ColVector, p: visp._visp.core.ColVector) None ¶
Compute the projection denominator (Z) used in x = X/Z and y = Y/Z.
Note
See warpX(const vpColVector &, vpColVector &, const vpColVector &)
Note
See warpX(const int &, const int &, double &, double &, const vpColVector &)
Note
See dWarp() , dWarpCompo()
- Parameters:
- X: visp._visp.core.ColVector¶
Point with coordinates (u, v) to consider.
- p: visp._visp.core.ColVector¶
8-dim vector that contains the current parameters of the warping function.
- dWarp(self, arg0: visp._visp.core.ColVector, X: visp._visp.core.ColVector, arg2: visp._visp.core.ColVector, dW: visp._visp.core.Matrix) None ¶
Compute the derivative matrix of the warping function at point \(X=(u,v)\) according to the model parameters:
\[\frac{\partial M}{\partial p}(X, p) \]Note
See computeDenom()
- Parameters:
- X: visp._visp.core.ColVector¶
2-dim vector corresponding to the coordinates \((u_1, v_1)\) of the point to consider in the derivative computation.
- getDistanceBetweenZoneAndWarpedZone(self, Z: visp._visp.tt.TemplateTrackerZone, p: visp._visp.core.ColVector) float ¶
Compute the distance between a zone and its associated warped zone.
- Parameters:
- Z: visp._visp.tt.TemplateTrackerZone¶
Zone to consider.
- p: visp._visp.core.ColVector¶
Parameters of the warping function.
- getHomography(self, ParamM: visp._visp.core.ColVector) visp._visp.vision.Homography ¶
- Returns:
Corresponding homography.
- getNbParam(self) int ¶
Get the number of parameters of the warping function.
- Returns:
Number of parameters.
- getParam(*args, **kwargs)¶
Overloaded function.
getParam(self: visp._visp.tt.TemplateTrackerWarpHomography, H: visp._visp.vision.Homography, p: visp._visp.core.ColVector) -> None
Compute the parameters corresponding to an homography.
- Parameters:
- H
Homography
- p
8-dim vector corresponding to the homography.
getParam(self: visp._visp.tt.TemplateTrackerWarpHomography, H: visp._visp.core.Matrix, p: visp._visp.core.ColVector) -> None
Compute the parameters corresponding to an homography as a 3-by-3 matrix.
- Parameters:
- H
3-by-3 matrix corresponding to an homography
- p
8-dim vector corresponding to the homography.
- getParamInverse(self, p: visp._visp.core.ColVector, p_inv: visp._visp.core.ColVector) None ¶
Compute inverse of the warping transformation.
- Parameters:
- p: visp._visp.core.ColVector¶
8-dim vector that contains the parameters corresponding to the transformation to inverse.
- p_inv: visp._visp.core.ColVector¶
8-dim vector that contains the parameters of the inverse transformation \({M(p)}^{-1}\) .
- getParamPyramidDown(self, p: visp._visp.core.ColVector, p_down: visp._visp.core.ColVector) None ¶
Get the parameters of the warping function one level down where image size is divided by two along the lines and the columns.
- Parameters:
- p: visp._visp.core.ColVector¶
8-dim vector that contains the current parameters of the warping function.
- p_down: visp._visp.core.ColVector¶
8-dim vector that contains the resulting parameters one level down.
- getParamPyramidUp(self, p: visp._visp.core.ColVector, p_up: visp._visp.core.ColVector) None ¶
Get the parameters of the warping function one level up where image size is multiplied by two along the lines and the columns.
- Parameters:
- p: visp._visp.core.ColVector¶
8-dim vector that contains the current parameters of the warping function.
- p_up: visp._visp.core.ColVector¶
8-dim vector that contains the resulting parameters one level up.
- pRondp(self, p1: visp._visp.core.ColVector, p2: visp._visp.core.ColVector, p12: visp._visp.core.ColVector) None ¶
Compute the transformation resulting from the composition of two other transformations.
- Parameters:
- p1: visp._visp.core.ColVector¶
8-dim vector that contains the parameters corresponding to first transformation.
- p2: visp._visp.core.ColVector¶
8-dim vector that contains the parameters corresponding to second transformation.
- p12: visp._visp.core.ColVector¶
8-dim vector that contains the resulting transformation \(p_{12} = p_1 \circ p_2\) .
- warpTriangle(self: visp._visp.tt.TemplateTrackerWarp, in: visp._visp.tt.TemplateTrackerTriangle, p: visp._visp.core.ColVector, out: visp._visp.tt.TemplateTrackerTriangle) None ¶
Warp a triangle and store the result in a new zone.
- Parameters:
- in
Triangle to warp.
- p
Parameters of the warping function. These parameters are estimated by the template tracker and returned using vpTemplateTracker::getp() .
- out
Resulting triangle.
- warpX(*args, **kwargs)¶
Overloaded function.
warpX(self: visp._visp.tt.TemplateTrackerWarpHomography, X1: visp._visp.core.ColVector, X2: visp._visp.core.ColVector, p: visp._visp.core.ColVector) -> None
Warp point \(X_1=(u_1,v_1)\) using the transformation model.
\[X_2 = {^2}M_1(p) * X_1\]Note
See computeDenom()
- Parameters:
- X1
2-dim vector corresponding to the coordinates \((u_1, v_1)\) of the point to warp.
- X2
2-dim vector corresponding to the coordinates \((u_2, v_2)\) of the warped point.
- p
8-dim vector that contains the parameters of the transformation.
warpX(self: visp._visp.tt.TemplateTrackerWarpHomography, v1: int, u1: int, v2: float, u2: float, p: visp._visp.core.ColVector) -> tuple[float, float]
Warp point \(X_1=(u_1,v_1)\) using the transformation model with parameters \(p\) .
\[X_2 = {^2}M_1(p) * X_1\]- Parameters:
- v1
Coordinate (along the image rows axis) of the point \(X_1=(u_1,v_1)\) to warp.
- u1
Coordinate (along the image columns axis) of the point \(X_1=(u_1,v_1)\) to warp.
- v2
Coordinate of the warped point \(X_2=(u_2,v_2)\) along the image rows axis.
- u2
Coordinate of the warped point \(X_2=(u_2,v_2)\) along the image column axis.
- p
8-dim vector that contains the parameters of the transformation.
- Returns:
A tuple containing:
v2: Coordinate of the warped point \(X_2=(u_2,v_2)\) along the image rows axis.
u2: Coordinate of the warped point \(X_2=(u_2,v_2)\) along the image column axis.
- warpXInv(self, X1: visp._visp.core.ColVector, X2: visp._visp.core.ColVector, p: visp._visp.core.ColVector) None ¶
Warp a point X1 with the inverse transformation \(M\) .
\[X_2 = {\left({^1}M_2\right)}^{-1} \; X_1\]- Parameters:
- X1: visp._visp.core.ColVector¶
2-dim vector corresponding to the coordinates (u,v) of the point to warp.
- X2: visp._visp.core.ColVector¶
2-dim vector corresponding to the coordinates (u,v) of the warped point.
- p: visp._visp.core.ColVector¶
Parameters corresponding to the warping model \({^1}M_2\) .
- warpZone(self: visp._visp.tt.TemplateTrackerWarp, in: visp._visp.tt.TemplateTrackerZone, p: visp._visp.core.ColVector, out: visp._visp.tt.TemplateTrackerZone) None ¶
Warp a zone and store the result in a new zone.
- Parameters:
- in
Zone to warp.
- p
Parameters of the warping function. These parameters are estimated by the template tracker and returned using vpTemplateTracker::getp() .
- out
Resulting zone.