ThetaUVector¶
- class ThetaUVector(*args, **kwargs)¶
Bases:
RotationVector
Implementation of a rotation vector as \(\theta {\bf u}\) axis-angle minimal representation.
Class that consider the case of the \(\theta {\bf u}\) parameterization for the rotation.
The vpThetaUVector class is derived from vpRotationVector .
The \(\theta {\bf u}\) representation is one of the minimal representation of a rotation matrix, where \({\bf u} = (u_{x} \; u_{y} \; u_{z})^{\top}\) is a unit vector representing the rotation axis and \(\theta\) is the rotation angle.
From the \(\theta {\bf u}\) representation it is possible to build the rotation matrix \({\bf R}\) using the Rodrigues formula:
\[{\bf R} = {\bf I}_{3} + (1 - \cos{ \theta}) \; {\bf u u}^{\top} + \sin{ \theta} \; [{\bf u}]_{\times} \]with \({\bf I}_{3}\) the identity matrix of dimension \(3\times3\) and \([{\bf u}]_{\times}\) the skew matrix:
\[\begin{split}[{\bf u}]_{\times} = \left( \begin{array}{ccc} 0 & -u_{z} & u_{y} \\u_{z} & 0 & -u_{x} \\-u_{y} & u_{x} & 0 \end{array} \right) \end{split}\]From the implementation point of view, it is nothing more than an array of three floats with values in [rad].
You can set values [rad] accessing each element:
vpThetaUVector tu; tu[0] = M_PI_4; tu[1] = M_PI_2; tu[2] = M_PI;
You can also initialize the vector using operator<<(double) :
tu << M_PI_4, M_PI_2, M_PI;
Or you can also initialize the vector from a list of doubles if ViSP is build with c++11 enabled:
tu = {M_PI_4, M_PI_2, M_PI};
To get the values [rad] use:
double tux = tu[0]; double tuy = tu[1]; double tuz = tu[2];
The code below shows first how to initialize a \(\theta {\bf u}\) vector, than how to construct a rotation matrix from a vpThetaUVector and finally how to extract the theta U angles from the build rotation matrix.
#include <iostream> #include <visp3/core/vpMath.h> #include <visp3/core/vpRotationMatrix.h> #include <visp3/core/vpThetaUVector.h> #ifdef ENABLE_VISP_NAMESPACE using namespace VISP_NAMESPACE_NAME; #endif int main() { vpThetaUVector tu; // Initialise the theta U rotation vector tu[0] = vpMath::rad( 45.f); tu[1] = vpMath::rad(-30.f); tu[2] = vpMath::rad( 90.f); // Construct a rotation matrix from the theta U angles vpRotationMatrix R(tu); // Extract the theta U angles from a rotation matrix tu.buildFrom(R); // Print the extracted theta U angles. Values are the same than the // one used for initialization std::cout << tu; // Since the rotation vector is 3 values column vector, the // transpose operation produce a row vector. vpRowVector tu_t = tu.t(); // Print the transpose row vector std::cout << tu_t << std::endl; }
Overloaded function.
__init__(self: visp._visp.core.ThetaUVector) -> None
Default constructor that initialize all the 3 angles to zero.
__init__(self: visp._visp.core.ThetaUVector, tu: visp._visp.core.ThetaUVector) -> None
Copy constructor.
__init__(self: visp._visp.core.ThetaUVector, M: visp._visp.core.HomogeneousMatrix) -> None
__init__(self: visp._visp.core.ThetaUVector, p: visp._visp.core.PoseVector) -> None
__init__(self: visp._visp.core.ThetaUVector, R: visp._visp.core.RotationMatrix) -> None
__init__(self: visp._visp.core.ThetaUVector, rzyx: visp._visp.core.RzyxVector) -> None
__init__(self: visp._visp.core.ThetaUVector, rzyz: visp._visp.core.RzyzVector) -> None
__init__(self: visp._visp.core.ThetaUVector, rxyz: visp._visp.core.RxyzVector) -> None
__init__(self: visp._visp.core.ThetaUVector, q: visp._visp.core.QuaternionVector) -> None
__init__(self: visp._visp.core.ThetaUVector, tu: visp._visp.core.ColVector) -> None
__init__(self: visp._visp.core.ThetaUVector, tu: list[float]) -> None
__init__(self: visp._visp.core.ThetaUVector, tux: float, tuy: float, tuz: float) -> None
Build a \(\theta {\bf u}\) vector from 3 angles in radians.
#include <visp3/core/vpThetaUVector.cpp> #ifdef ENABLE_VISP_NAMESPACE using namespace VISP_NAMESPACE_NAME; #endif int main() { vpThetaUVector tu(0, M_PI_2, M_PI); std::cout << "tu: " << tu.t() << std::endl; }
It produces the following printings:
tu: 0 1.570796327 3.141592654
Methods
Overloaded function.
Overloaded function.
Extract the rotation angle \(\theta\) and the unit vector \(\bf u\) from the \(\theta {\bf u}\) representation.
Get the rotation angle \(\theta\) from the \(\theta {\bf u}\) representation.
Get the unit vector \(\bf u\) from the \(\theta {\bf u}\) representation.
Inherited Methods
Save an array in a YAML-formatted file.
- param m:
Second matrix;
Return the array max value.
Overloaded function.
Numpy view of the underlying array data.
Overloaded function.
Return the sum square of all the elements \(r_{i}\) of the rotation vector r(m).
Return the number of columns of the 2D array.
Return the number of rows of the 2D array.
Overloaded function.
Set the size of the array and initialize all the values to zero.
Return the number of elements of the 2D array.
Overloaded function.
Insert array B in array A at the given position.
Return the array min value.
- return:
The corresponding std::vector<double>.
Operators
__doc__
Overloaded function.
__module__
Perform rotation chaining / rotation multiplication using the theta.u rotation representation.
Attributes
__annotations__
- __eq__(*args, **kwargs)¶
Overloaded function.
__eq__(self: visp._visp.core.ArrayDouble2D, A: visp._visp.core.ArrayDouble2D) -> bool
Equal to comparison operator of a 2D array.
__eq__(self: visp._visp.core.ArrayDouble2D, A: visp._visp.core.ArrayDouble2D) -> bool
Equal to comparison operator of a 2D array.
__eq__(self: visp._visp.core.ArrayDouble2D, A: visp._visp.core.ArrayDouble2D) -> bool
Equal to comparison operator of a 2D array.
- __getitem__(*args, **kwargs)¶
Overloaded function.
__getitem__(self: visp._visp.core.ArrayDouble2D, arg0: tuple[int, int]) -> float
__getitem__(self: visp._visp.core.ArrayDouble2D, arg0: int) -> numpy.ndarray[numpy.float64]
__getitem__(self: visp._visp.core.ArrayDouble2D, arg0: slice) -> numpy.ndarray[numpy.float64]
__getitem__(self: visp._visp.core.ArrayDouble2D, arg0: tuple) -> numpy.ndarray[numpy.float64]
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: visp._visp.core.ThetaUVector) -> None
Default constructor that initialize all the 3 angles to zero.
__init__(self: visp._visp.core.ThetaUVector, tu: visp._visp.core.ThetaUVector) -> None
Copy constructor.
__init__(self: visp._visp.core.ThetaUVector, M: visp._visp.core.HomogeneousMatrix) -> None
__init__(self: visp._visp.core.ThetaUVector, p: visp._visp.core.PoseVector) -> None
__init__(self: visp._visp.core.ThetaUVector, R: visp._visp.core.RotationMatrix) -> None
__init__(self: visp._visp.core.ThetaUVector, rzyx: visp._visp.core.RzyxVector) -> None
__init__(self: visp._visp.core.ThetaUVector, rzyz: visp._visp.core.RzyzVector) -> None
__init__(self: visp._visp.core.ThetaUVector, rxyz: visp._visp.core.RxyzVector) -> None
__init__(self: visp._visp.core.ThetaUVector, q: visp._visp.core.QuaternionVector) -> None
__init__(self: visp._visp.core.ThetaUVector, tu: visp._visp.core.ColVector) -> None
__init__(self: visp._visp.core.ThetaUVector, tu: list[float]) -> None
__init__(self: visp._visp.core.ThetaUVector, tux: float, tuy: float, tuz: float) -> None
Build a \(\theta {\bf u}\) vector from 3 angles in radians.
#include <visp3/core/vpThetaUVector.cpp> #ifdef ENABLE_VISP_NAMESPACE using namespace VISP_NAMESPACE_NAME; #endif int main() { vpThetaUVector tu(0, M_PI_2, M_PI); std::cout << "tu: " << tu.t() << std::endl; }
It produces the following printings:
tu: 0 1.570796327 3.141592654
- __mul__(self, tu_b: visp._visp.core.ThetaUVector) visp._visp.core.ThetaUVector ¶
Perform rotation chaining / rotation multiplication using the theta.u rotation representation. See: this answer for some details about the maths.
- __ne__(*args, **kwargs)¶
Overloaded function.
__ne__(self: visp._visp.core.ArrayDouble2D, A: visp._visp.core.ArrayDouble2D) -> bool
Not equal to comparison operator of a 2D array.
__ne__(self: visp._visp.core.ArrayDouble2D, A: visp._visp.core.ArrayDouble2D) -> bool
Not equal to comparison operator of a 2D array.
__ne__(self: visp._visp.core.ArrayDouble2D, A: visp._visp.core.ArrayDouble2D) -> bool
Not equal to comparison operator of a 2D array.
- buildFrom(*args, **kwargs)¶
Overloaded function.
buildFrom(self: visp._visp.core.ThetaUVector, M: visp._visp.core.HomogeneousMatrix) -> visp._visp.core.ThetaUVector
Converts an homogeneous matrix into a \(\theta {\bf u}\) vector.
buildFrom(self: visp._visp.core.ThetaUVector, p: visp._visp.core.PoseVector) -> visp._visp.core.ThetaUVector
Converts a pose vector into a \(\theta {\bf u}\) vector copying the \(\theta {\bf u}\) values contained in the pose vector.
buildFrom(self: visp._visp.core.ThetaUVector, R: visp._visp.core.RotationMatrix) -> visp._visp.core.ThetaUVector
Converts a rotation matrix into a \(\theta {\bf u}\) vector.
buildFrom(self: visp._visp.core.ThetaUVector, rzyx: visp._visp.core.RzyxVector) -> visp._visp.core.ThetaUVector
Build a \(\theta {\bf u}\) vector from an Euler z-y-x representation vector.
buildFrom(self: visp._visp.core.ThetaUVector, zyz: visp._visp.core.RzyzVector) -> visp._visp.core.ThetaUVector
Build a \(\theta {\bf u}\) vector from an Euler z-y-z representation vector.
buildFrom(self: visp._visp.core.ThetaUVector, xyz: visp._visp.core.RxyzVector) -> visp._visp.core.ThetaUVector
Build a \(\theta {\bf u}\) vector from an Euler x-y-z representation vector.
buildFrom(self: visp._visp.core.ThetaUVector, q: visp._visp.core.QuaternionVector) -> visp._visp.core.ThetaUVector
Build a \(\theta {\bf u}\) vector from a quaternion representation vector.
buildFrom(self: visp._visp.core.ThetaUVector, tu: visp._visp.core.ColVector) -> visp._visp.core.ThetaUVector
Build a \(\theta {\bf u}\) vector from a 3-dim vector.
buildFrom(self: visp._visp.core.ThetaUVector, tu: list[float]) -> visp._visp.core.ThetaUVector
Build a \(\theta {\bf u}\) vector from a 3-dim vectors.
buildFrom(self: visp._visp.core.ThetaUVector, tux: float, tuy: float, tuz: float) -> visp._visp.core.ThetaUVector
Build a \(\theta {\bf u}\) vector from 3 angles in radian.
- static conv2(*args, **kwargs)¶
Overloaded function.
conv2(M: visp._visp.core.ArrayDouble2D, kernel: visp._visp.core.ArrayDouble2D, mode: str) -> visp._visp.core.ArrayDouble2D
Perform a 2D convolution similar to Matlab conv2 function: \(M \star kernel\) .
<unparsed image <doxmlparser.compound.docImageType object at 0x7f6e0a5138e0>>
Note
This is a very basic implementation that does not use FFT.
- Parameters:
- M
First matrix.
- kernel
Second matrix.
- mode
Convolution mode: “full” (default), “same”, “valid”.
conv2(M: visp._visp.core.ArrayDouble2D, kernel: visp._visp.core.ArrayDouble2D, res: visp._visp.core.ArrayDouble2D, mode: str) -> None
Perform a 2D convolution similar to Matlab conv2 function: \(M \star kernel\) .
<unparsed image <doxmlparser.compound.docImageType object at 0x7f6e0a52d540>>
Note
This is a very basic implementation that does not use FFT.
- Parameters:
- M
First array.
- kernel
Second array.
- res
Result.
- mode
Convolution mode: “full” (default), “same”, “valid”.
conv2(M: visp._visp.core.ArrayDouble2D, kernel: visp._visp.core.ArrayDouble2D, mode: str) -> visp._visp.core.ArrayDouble2D
Perform a 2D convolution similar to Matlab conv2 function: \(M \star kernel\) .
<unparsed image <doxmlparser.compound.docImageType object at 0x7f6e0a5138e0>>
Note
This is a very basic implementation that does not use FFT.
- Parameters:
- M
First matrix.
- kernel
Second matrix.
- mode
Convolution mode: “full” (default), “same”, “valid”.
conv2(M: visp._visp.core.ArrayDouble2D, kernel: visp._visp.core.ArrayDouble2D, res: visp._visp.core.ArrayDouble2D, mode: str) -> None
Perform a 2D convolution similar to Matlab conv2 function: \(M \star kernel\) .
<unparsed image <doxmlparser.compound.docImageType object at 0x7f6e0a52d540>>
Note
This is a very basic implementation that does not use FFT.
- Parameters:
- M
First array.
- kernel
Second array.
- res
Result.
- mode
Convolution mode: “full” (default), “same”, “valid”.
- extract(self) tuple[float, visp._visp.core.ColVector] ¶
Extract the rotation angle \(\theta\) and the unit vector \(\bf u\) from the \(\theta {\bf u}\) representation.
The following example shows how to use this function:
#include <visp3/core/vpThetaUVector.h> #ifdef ENABLE_VISP_NAMESPACE using namespace VISP_NAMESPACE_NAME; #endif int main() { vpHomogeneousMatrix M(0, 0, 1., vpMath::rad(10), vpMath::rad(20), vpMath::rad(30)); double theta; vpColVector u; M.getRotationMatrix().getThetaUVector().extract(theta, u); std::cout << "theta: " << theta << std::endl; std::cout << "u : " << u.t() << std::endl; }
Note
See getTheta() , getU()
- Returns:
A tuple containing:
theta: Rotation angle \(\theta\) in rad.
u: 3-dim unit vector \({\bf u} = (u_{x},u_{y},u_{z})^{\top}\) representing the rotation axis.
- getTheta(self) float ¶
Get the rotation angle \(\theta\) from the \(\theta {\bf u}\) representation.
The following example shows how to use this function:
#include <visp3/core/vpThetaUVector.h> #ifdef ENABLE_VISP_NAMESPACE using namespace VISP_NAMESPACE_NAME; #endif int main() { vpHomogeneousMatrix M(0, 0, 1., vpMath::rad(10), vpMath::rad(20), vpMath::rad(30)); std::cout << "theta: " << M.getRotationMatrix().getThetaUVector().getTheta() << std::endl; std::cout << "u : " << M.getRotationMatrix().getThetaUVector().getU().t() << std::endl; }
Note
See getTheta() , extract()
- Returns:
Rotation angle \(\theta\) in rad.
- getU(self) visp._visp.core.ColVector ¶
Get the unit vector \(\bf u\) from the \(\theta {\bf u}\) representation.
The following example shows how to use this function:
#include <visp3/core/vpThetaUVector.h> #ifdef ENABLE_VISP_NAMESPACE using namespace VISP_NAMESPACE_NAME; #endif int main() { vpHomogeneousMatrix M(0, 0, 1., vpMath::rad(10), vpMath::rad(20), pMath::rad(30)); std::cout << "theta: " << M.getRotationMatrix().getThetaUVector().getTheta() << std::endl; std::cout << "u : " << M.getRotationMatrix().getThetaUVector().getU().t() << std::endl; }
Note
See getTheta() , extract()
- Returns:
3-dim unit vector \({\bf u} = (u_{x},u_{y},u_{z})^{\top}\) representing the rotation axis.
- hadamard(self, m: visp._visp.core.ArrayDouble2D) visp._visp.core.ArrayDouble2D ¶
- Parameters:
- m: visp._visp.core.ArrayDouble2D¶
Second matrix;
- Returns:
m1.hadamard(m2) The Hadamard product : \(m1 \circ m2 = (m1 \circ m2)_{i,j} = (m1)_{i,j} (m2)_{i,j}\)
- insert(*args, **kwargs)¶
Overloaded function.
insert(self: visp._visp.core.ArrayDouble2D, A: visp._visp.core.ArrayDouble2D, r: int, c: int) -> None
Insert array A at the given position in the current array.
Warning
Throw vpException::dimensionError if the dimensions of the matrices do not allow the operation.
- Parameters:
- A
The array to insert.
- r
The index of the row to begin to insert data.
- c
The index of the column to begin to insert data.
insert(self: visp._visp.core.ArrayDouble2D, A: visp._visp.core.ArrayDouble2D, B: visp._visp.core.ArrayDouble2D, r: int, c: int) -> visp._visp.core.ArrayDouble2D
Insert array B in array A at the given position.
Warning
Throw exception if the sizes of the arrays do not allow the insertion.
- Parameters:
- A
Main array.
- B
Array to insert.
- r
Index of the row where to add the array.
- c
Index of the column where to add the array.
- Returns:
Array with B insert in A.
- static insertStatic(A: visp._visp.core.ArrayDouble2D, B: visp._visp.core.ArrayDouble2D, C: visp._visp.core.ArrayDouble2D, r: int, c: int) None ¶
Insert array B in array A at the given position.
Warning
Throw exception if the sizes of the arrays do not allow the insertion.
- Parameters:
- A: visp._visp.core.ArrayDouble2D¶
Main array.
- B: visp._visp.core.ArrayDouble2D¶
Array to insert.
- C: visp._visp.core.ArrayDouble2D¶
Result array.
- r: int¶
Index of the row where to insert array B.
- c: int¶
Index of the column where to insert array B.
- numpy(self) numpy.ndarray[numpy.float64] ¶
Numpy view of the underlying array data. This numpy view can be used to directly modify the array.
- resize(self, nrows: int, ncols: int, flagNullify: bool = true, recopy_: bool = true) None ¶
Set the size of the array and initialize all the values to zero.
- Parameters:
- nrows: int¶
number of rows.
- ncols: int¶
number of column.
- flagNullify: bool = true¶
if true, then the array is re-initialized to 0 after resize. If false, the initial values from the common part of the array (common part between old and new version of the array) are kept. Default value is true.
- recopy_: bool = true¶
if true, will perform an explicit recopy of the old data.
- static save(*args, **kwargs)¶
Overloaded function.
save(filename: str, A: visp._visp.core.ArrayDouble2D, binary: bool = false, header: str = ) -> bool
Save a matrix to a file.
Warning : If you save the matrix as in a text file the precision is less than if you save it in a binary file.
Note
See load()
- Parameters:
- filename
Absolute file name.
- A
Array to be saved.
- binary
If true the matrix is saved in a binary file, else a text file.
- header
Optional line that will be saved at the beginning of the file.
- Returns:
Returns true if success.
save(filename: str, A: visp._visp.core.ArrayDouble2D, binary: bool = false, header: str = ) -> bool
Save a matrix to a file.
Warning : If you save the matrix as in a text file the precision is less than if you save it in a binary file.
Note
See load()
- Parameters:
- filename
Absolute file name.
- A
Array to be saved.
- binary
If true the matrix is saved in a binary file, else a text file.
- header
Optional line that will be saved at the beginning of the file.
- Returns:
Returns true if success.
save(filename: str, A: visp._visp.core.ArrayDouble2D, binary: bool = false, header: str = ) -> bool
Save a matrix to a file.
Warning : If you save the matrix as in a text file the precision is less than if you save it in a binary file.
Note
See load()
- Parameters:
- filename
Absolute file name.
- A
Array to be saved.
- binary
If true the matrix is saved in a binary file, else a text file.
- header
Optional line that will be saved at the beginning of the file.
- Returns:
Returns true if success.
- static saveYAML(filename: str, A: visp._visp.core.ArrayDouble2D, header: str =) bool ¶
Save an array in a YAML-formatted file.
Here is an example of outputs.
vpArray2D<double> M(3,4); vpArray2D::saveYAML("matrix.yml", M, "example: a YAML-formatted header"); vpArray2D::saveYAML("matrixIndent.yml", M, "example:\n - a YAML-formatted \ header\n - with inner indentation");
Content of matrix.yml:
example: a YAML-formatted header rows: 3 cols: 4 data: - [0, 0, 0, 0] - [0, 0, 0, 0] - [0, 0, 0, 0]
Content of matrixIndent.yml:
example: - a YAML-formatted header - with inner indentation rows: 3 cols: 4 data: - [0, 0, 0, 0] - [0, 0, 0, 0] - [0, 0, 0, 0]
Note
See loadYAML()
- Parameters:
- filename
absolute file name.
- A
array to be saved in the file.
- header
optional lines that will be saved at the beginning of the file. Should be YAML-formatted and will adapt to the indentation if any.
- Returns:
Returns true if success.
- sumSquare(self) float ¶
Return the sum square of all the elements \(r_{i}\) of the rotation vector r(m).
- Returns:
The value
\[\sum{i=0}^{m} r_i^{2}\].
- t(*args, **kwargs)¶
Overloaded function.
t(self: visp._visp.core.RotationVector) -> visp._visp.core.RowVector
Return the transpose of the rotation vector.
t(self: visp._visp.core.ArrayDouble2D) -> visp._visp.core.ArrayDouble2D
Compute the transpose of the array.
- Returns:
vpArray2D<Type> C = A^T
-
__hash__ =
None
¶