example showing how to do visual servoing of Parrot Bebop 2 drone.
WARNING: this program does no sensing or avoiding of obstacles, the drone WILL collide with any objects in the way! Make sure the drone has about 3-4 meters of free space around it before starting the program.
This program makes the drone detect and follow an AprilTag from the 36h11 family.
#include <iostream>
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpMomentAreaNormalized.h>
#include <visp3/core/vpMomentBasic.h>
#include <visp3/core/vpMomentCentered.h>
#include <visp3/core/vpMomentDatabase.h>
#include <visp3/core/vpMomentGravityCenter.h>
#include <visp3/core/vpMomentGravityCenterNormalized.h>
#include <visp3/core/vpMomentObject.h>
#include <visp3/core/vpPixelMeterConversion.h>
#include <visp3/core/vpPoint.h>
#include <visp3/core/vpTime.h>
#include <visp3/core/vpXmlParserCamera.h>
#include <visp3/detection/vpDetectorAprilTag.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/gui/vpPlot.h>
#include <visp3/robot/vpRobotBebop2.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeatureMomentAreaNormalized.h>
#include <visp3/visual_features/vpFeatureMomentGravityCenterNormalized.h>
#include <visp3/visual_features/vpFeatureVanishingPoint.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>
#if !defined(VISP_HAVE_ARSDK)
int main()
{
std::cout << "\nThis example requires Parrot ARSDK3 library. You should install it.\n" << std::endl;
return EXIT_SUCCESS;
}
#elif !defined(VISP_HAVE_FFMPEG)
int main()
{
std::cout << "\nThis example requires ffmpeg library. You should install it.\n" << std::endl;
return EXIT_SUCCESS;
}
#elif !defined(VISP_HAVE_PUGIXML)
int main()
{
std::cout << "\nThis example requires pugixml built-in 3rdparty library. You should enable it.\n" << std::endl;
return EXIT_SUCCESS;
}
#else
#ifdef ENABLE_VISP_NAMESPACE
#endif
bool compareImagePoint(std::pair<size_t, vpImagePoint> p1, std::pair<size_t, vpImagePoint> p2)
{
return (p1.second.get_v() < p2.second.get_v());
};
int main(int argc, char **argv)
{
try {
std::string ip_address = "192.168.42.1";
std::string opt_cam_parameters;
bool opt_has_cam_parameters = false;
double tagSize = -1;
double opt_distance_to_tag = -1;
bool opt_has_distance_to_tag = false;
int stream_res = 0;
bool verbose = false;
if (argc >= 3 && std::string(argv[1]) == "--tag_size") {
tagSize = std::atof(argv[2]);
if (tagSize <= 0) {
std::cout << "Error : invalid tag size." << std::endl << "See " << argv[0] << " --help" << std::endl;
return EXIT_FAILURE;
}
for (int i = 3; i < argc; i++) {
if (std::string(argv[i]) == "--ip" && i + 1 < argc) {
ip_address = std::string(argv[i + 1]);
i++;
}
else if (std::string(argv[i]) == "--distance_to_tag" && i + 1 < argc) {
opt_distance_to_tag = std::atof(argv[i + 1]);
if (opt_distance_to_tag <= 0) {
std::cout << "Error : invalid distance to tag." << std::endl << "See " << argv[0] << " --help" << std::endl;
return EXIT_FAILURE;
}
opt_has_distance_to_tag = true;
i++;
}
else if (std::string(argv[i]) == "--intrinsic") {
opt_cam_parameters = std::string(argv[i + 1]);
opt_has_cam_parameters = true;
i++;
}
else if (std::string(argv[i]) == "--hd_stream") {
stream_res = 1;
}
else if (std::string(argv[i]) == "--verbose" || std::string(argv[i]) == "-v") {
verbose = true;
}
else {
std::cout << "Error : unknown parameter " << argv[i] << std::endl
<< "See " << argv[0] << " --help" << std::endl;
return EXIT_FAILURE;
}
}
}
else if (argc >= 2 && (std::string(argv[1]) == "--help" || std::string(argv[1]) == "-h")) {
std::cout << "\nUsage:\n"
<< " " << argv[0]
<< " [--tag_size <size>] [--ip <drone ip>] [--distance_to_tag <distance>] [--intrinsic <xml file>] "
<< "[--hd_stream] [--verbose] [-v] [--help] [-h]\n"
<< std::endl
<< "Description:\n"
<< " --tag_size <size>\n"
<< " The size of the tag to detect in meters, required.\n\n"
<< " --ip <drone ip>\n"
<< " Ip address of the drone to which you want to connect (default : 192.168.42.1).\n\n"
<< " --distance_to_tag <distance>\n"
<< " The desired distance to the tag in meters (default: 1 meter).\n\n"
<< " --intrinsic <xml file>\n"
<< " XML file containing computed intrinsic camera parameters (default: empty).\n\n"
<< " --hd_stream\n"
<< " Enables HD 720p streaming instead of default 480p.\n"
<< " Allows to increase range and accuracy of the tag detection,\n"
<< " but increases latency and computation time.\n"
<< " Caution: camera calibration settings are different for the two resolutions.\n"
<< " Make sure that if you pass custom intrinsic camera parameters,\n"
<< " they were obtained with the correct resolution.\n\n"
<< " --verbose, -v\n"
<< " Enables verbose (drone information messages and velocity commands\n"
<< " are then displayed).\n\n"
<< " --help, -h\n"
<< " Print help message.\n"
<< std::endl;
return EXIT_SUCCESS;
}
else {
std::cout << "Error : tag size parameter required." << std::endl << "See " << argv[0] << " --help" << std::endl;
return EXIT_FAILURE;
}
std::cout
<< "\nWARNING: \n - This program does no sensing or avoiding of "
"obstacles, \n"
"the drone WILL collide with any objects in the way! Make sure "
"the \n"
"drone has approximately 3 meters of free space on all sides.\n"
" - The drone uses a downward-facing camera for horizontal speed estimation,\n make sure the drone flies "
"above a non-uniform flooring,\n or its movement will be inacurate and dangerous !\n"
<< std::endl;
verbose, true, ip_address);
if (drone.isRunning()) {
drone.setVideoResolution(stream_res);
drone.setStreamingMode(0);
drone.setVideoStabilisationMode(0);
drone.doFlatTrim();
drone.startStreaming();
drone.setExposure(1.5f);
drone.setCameraOrientation(-5., 0.,
true);
drone.takeOff(true);
drone.getGrayscaleImage(I);
#if defined(VISP_HAVE_X11)
#elif defined(VISP_HAVE_GTK)
#elif defined(VISP_HAVE_GDI)
#elif defined(HAVE_OPENCV_HIGHGUI)
#endif
int orig_displayX = 100;
int orig_displayY = 100;
display.init(I, orig_displayX, orig_displayY, "DRONE VIEW");
vpPlot plotter(1, 700, 700, orig_displayX +
static_cast<int>(I.
getWidth()) + 20, orig_displayY,
"Visual servoing tasks");
unsigned int iter = 0;
detector.setAprilTagQuadDecimate(4.0);
detector.setAprilTagNbThreads(4);
detector.setDisplayTag(true);
if (opt_has_cam_parameters) {
std::cout << "Cannot find parameters in XML file " << opt_cam_parameters << std::endl;
if (drone.getVideoHeight() == 720) {
}
else {
}
}
}
else {
std::cout << "Setting default camera parameters ... " << std::endl;
if (drone.getVideoHeight() == 720) {
}
else {
}
}
eJe[0][0] = 1;
eJe[1][1] = 1;
eJe[2][2] = 1;
eJe[5][3] = 1;
double Z_d = (opt_has_distance_to_tag ? opt_distance_to_tag : 1.);
double X[4] = { tagSize / 2., tagSize / 2., -tagSize / 2., -tagSize / 2. };
double Y[4] = { tagSize / 2., -tagSize / 2., -tagSize / 2., tagSize / 2. };
std::vector<vpPoint> vec_P, vec_P_d;
for (int i = 0; i < 4; i++) {
P_d.track(cdMo);
vec_P_d.push_back(P_d);
}
m_obj_d.fromVector(vec_P_d);
man_d.linkTo(mdb_d);
double area = 0;
area = mb_d.
get(2, 0) + mb_d.
get(0, 2);
else
man_d.setDesiredArea(area);
man_d.compute();
double A = 0.0;
double B = 0.0;
double C = 1.0 / Z_d;
plotter.initGraph(0, 4);
plotter.setLegend(0, 0, "Xn");
plotter.setLegend(0, 1, "Yn");
plotter.setLegend(0, 2, "an");
plotter.setLegend(0, 3, "atan(1/rho)");
s_mgn_d.update(A, B, C);
s_mgn_d.compute_interaction();
s_man_d.update(A, B, C);
s_man_d.compute_interaction();
bool runLoop = true;
bool vec_ip_has_been_sorted = false;
std::vector<std::pair<size_t, vpImagePoint> > vec_ip_sorted;
while (drone.isRunning() && drone.isStreaming() && runLoop) {
drone.getGrayscaleImage(I);
std::vector<vpHomogeneousMatrix> cMo_vec;
detector.detect(I, tagSize, cam, cMo_vec);
{
std::stringstream ss;
ss << "Detection time: " << t << " ms";
}
if (detector.getNbObjects() == 1) {
std::vector<vpImagePoint> vec_ip = detector.getPolygon(0);
vec_P.clear();
for (size_t i = 0; i < vec_ip.size(); i++) {
double x = 0, y = 0;
vec_P.push_back(P);
}
m_obj.fromVector(vec_P);
man.linkTo(mdb);
man.setDesiredArea(area);
man.compute();
s_mgn.update(A, B, C);
s_mgn.compute_interaction();
s_man.update(A, B, C);
s_man.compute_interaction();
if (!vec_ip_has_been_sorted) {
for (size_t i = 0; i < vec_ip.size(); i++) {
std::pair<size_t, vpImagePoint> index_pair = std::pair<size_t, vpImagePoint>(i, vec_ip[i]);
vec_ip_sorted.push_back(index_pair);
}
std::sort(vec_ip_sorted.begin(), vec_ip_sorted.end(), compareImagePoint);
vec_ip_has_been_sorted = true;
}
vec_ip[vec_ip_sorted[2].first], vec_ip[vec_ip_sorted[3].first],
if (verbose) {
std::cout <<
"ve: " << ve.
t() << std::endl;
}
drone.setVelocity(ve, 1.0);
for (size_t i = 0; i < 4; i++) {
std::stringstream ss;
ss << i;
}
3);
3);
3);
false);
false);
}
else {
std::stringstream sserr;
sserr << "Failed to detect an Apriltag, or detected multiple ones";
drone.stopMoving();
}
drone.land();
runLoop = false;
}
std::stringstream sstime;
sstime << "Total time: " << totalTime << " ms";
iter++;
}
return EXIT_SUCCESS;
}
else {
std::cout << "ERROR : failed to setup drone control." << std::endl;
return EXIT_FAILURE;
}
}
std::cout << "Caught an exception: " << e << std::endl;
return EXIT_FAILURE;
}
}
#endif
Adaptive gain computation.
Generic class defining intrinsic camera parameters.
void initPersProjWithoutDistortion(double px, double py, double u0, double v0)
vpCameraParametersProjType
@ perspectiveProjWithoutDistortion
Perspective projection without distortion model.
Implementation of column vector and the associated operations.
static const vpColor green
@ TAG_36h11
AprilTag 36h11 pattern (recommended)
Display for windows using GDI (available on any windows 32 platform).
The vpDisplayGTK allows to display image using the GTK 3rd party library. Thus to enable this class G...
The vpDisplayOpenCV allows to display image using the OpenCV library. Thus to enable this class OpenC...
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
static void display(const vpImage< unsigned char > &I)
static void displayLine(const vpImage< unsigned char > &I, const vpImagePoint &ip1, const vpImagePoint &ip2, const vpColor &color, unsigned int thickness=1, bool segment=true)
static void displayCross(const vpImage< unsigned char > &I, const vpImagePoint &ip, unsigned int size, const vpColor &color, unsigned int thickness=1)
static void flush(const vpImage< unsigned char > &I)
static void displayText(const vpImage< unsigned char > &I, const vpImagePoint &ip, const std::string &s, const vpColor &color)
static void displayPolygon(const vpImage< unsigned char > &I, const std::vector< vpImagePoint > &vip, const vpColor &color, unsigned int thickness=1, bool closed=true)
error that can be emitted by ViSP classes.
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
Functionality computation for normalized surface moment feature. Computes the interaction matrix asso...
Functionality computation for centered and normalized moment feature. Computes the interaction matrix...
static unsigned int selectAtanOneOverRho()
void setAlpha(double alpha)
Set vanishing point feature value.
void setAtanOneOverRho(double atan_one_over_rho)
Set vanishing point feature value.
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
unsigned int getWidth() const
unsigned int getHeight() const
static double rad(double deg)
Implementation of a matrix and operations on matrices.
Class handling the normalized surface moment that is invariant in scale and used to estimate depth.
This class defines the 2D basic moment . This class is a wrapper for vpMomentObject which allows to u...
const std::vector< double > & get() const
This class defines the double-indexed centered moment descriptor .
This class allows to register all vpMoments so they can access each other according to their dependen...
virtual void updateAll(vpMomentObject &object)
Class describing 2D normalized gravity center moment.
Class describing 2D gravity center moment.
Class for generic objects.
void linkTo(vpMomentDatabase &moments)
static void convertPoint(const vpCameraParameters &cam, const double &u, const double &v, double &x, double &y)
This class enables real time drawing of 2D or 3D graphics. An instance of the class open a window whi...
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
void set_x(double x)
Set the point x coordinate in the image plane.
void set_y(double y)
Set the point y coordinate in the image plane.
Implementation of a rotation matrix and operations on such kind of matrices.
Implementation of a rotation vector as Euler angle minimal representation.
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
void set_cVe(const vpVelocityTwistMatrix &cVe_)
void set_eJe(const vpMatrix &eJe_)
void setServo(const vpServoType &servo_type)
vpColVector getError() const
vpColVector computeControlLaw()
Class that consider the case of a translation vector.
XML parser to load and save intrinsic camera parameters.
int parse(vpCameraParameters &cam, const std::string &filename, const std::string &camera_name, const vpCameraParameters::vpCameraParametersProjType &projModel, unsigned int image_width=0, unsigned int image_height=0, bool verbose=true)
VISP_EXPORT int wait(double t0, double t)
VISP_EXPORT double measureTimeMs()