Visual Servoing Platform  version 3.6.1 under development (2024-11-21)
servoBebop2.cpp

example showing how to do visual servoing of Parrot Bebop 2 drone.

WARNING: this program does no sensing or avoiding of obstacles, the drone WILL collide with any objects in the way! Make sure the drone has about 3-4 meters of free space around it before starting the program.

This program makes the drone detect and follow an AprilTag from the 36h11 family.

/****************************************************************************
*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2023 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Example that shows how to do visual servoing with Parrot Bebop 2 drone in ViSP.
*
* Authors:
* Gatien Gaumerais
*
*****************************************************************************/
#include <iostream>
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpMomentAreaNormalized.h>
#include <visp3/core/vpMomentBasic.h>
#include <visp3/core/vpMomentCentered.h>
#include <visp3/core/vpMomentDatabase.h>
#include <visp3/core/vpMomentGravityCenter.h>
#include <visp3/core/vpMomentGravityCenterNormalized.h>
#include <visp3/core/vpMomentObject.h>
#include <visp3/core/vpPixelMeterConversion.h>
#include <visp3/core/vpPoint.h>
#include <visp3/core/vpTime.h>
#include <visp3/core/vpXmlParserCamera.h>
#include <visp3/detection/vpDetectorAprilTag.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/gui/vpPlot.h>
#include <visp3/robot/vpRobotBebop2.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeatureMomentAreaNormalized.h>
#include <visp3/visual_features/vpFeatureMomentGravityCenterNormalized.h>
#include <visp3/visual_features/vpFeatureVanishingPoint.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>
#if !defined(VISP_HAVE_ARSDK)
int main()
{
std::cout << "\nThis example requires Parrot ARSDK3 library. You should install it.\n" << std::endl;
return EXIT_SUCCESS;
}
#elif !defined(VISP_HAVE_FFMPEG)
int main()
{
std::cout << "\nThis example requires ffmpeg library. You should install it.\n" << std::endl;
return EXIT_SUCCESS;
}
#elif !defined(VISP_HAVE_PUGIXML)
int main()
{
std::cout << "\nThis example requires pugixml built-in 3rdparty library. You should enable it.\n" << std::endl;
return EXIT_SUCCESS;
}
#else
#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif
bool compareImagePoint(std::pair<size_t, vpImagePoint> p1, std::pair<size_t, vpImagePoint> p2)
{
return (p1.second.get_v() < p2.second.get_v());
};
int main(int argc, char **argv)
{
try {
std::string ip_address = "192.168.42.1";
std::string opt_cam_parameters;
bool opt_has_cam_parameters = false;
double tagSize = -1;
double opt_distance_to_tag = -1;
bool opt_has_distance_to_tag = false;
int stream_res = 0; // Default 480p resolution
bool verbose = false;
if (argc >= 3 && std::string(argv[1]) == "--tag_size") {
tagSize = std::atof(argv[2]); // Tag size option is required
if (tagSize <= 0) {
std::cout << "Error : invalid tag size." << std::endl << "See " << argv[0] << " --help" << std::endl;
return EXIT_FAILURE;
}
for (int i = 3; i < argc; i++) {
if (std::string(argv[i]) == "--ip" && i + 1 < argc) {
ip_address = std::string(argv[i + 1]);
i++;
}
else if (std::string(argv[i]) == "--distance_to_tag" && i + 1 < argc) {
opt_distance_to_tag = std::atof(argv[i + 1]);
if (opt_distance_to_tag <= 0) {
std::cout << "Error : invalid distance to tag." << std::endl << "See " << argv[0] << " --help" << std::endl;
return EXIT_FAILURE;
}
opt_has_distance_to_tag = true;
i++;
}
else if (std::string(argv[i]) == "--intrinsic") {
opt_cam_parameters = std::string(argv[i + 1]);
opt_has_cam_parameters = true;
i++;
}
else if (std::string(argv[i]) == "--hd_stream") {
stream_res = 1;
}
else if (std::string(argv[i]) == "--verbose" || std::string(argv[i]) == "-v") {
verbose = true;
}
else {
std::cout << "Error : unknown parameter " << argv[i] << std::endl
<< "See " << argv[0] << " --help" << std::endl;
return EXIT_FAILURE;
}
}
}
else if (argc >= 2 && (std::string(argv[1]) == "--help" || std::string(argv[1]) == "-h")) {
std::cout << "\nUsage:\n"
<< " " << argv[0]
<< " [--tag_size <size>] [--ip <drone ip>] [--distance_to_tag <distance>] [--intrinsic <xml file>] "
<< "[--hd_stream] [--verbose] [-v] [--help] [-h]\n"
<< std::endl
<< "Description:\n"
<< " --tag_size <size>\n"
<< " The size of the tag to detect in meters, required.\n\n"
<< " --ip <drone ip>\n"
<< " Ip address of the drone to which you want to connect (default : 192.168.42.1).\n\n"
<< " --distance_to_tag <distance>\n"
<< " The desired distance to the tag in meters (default: 1 meter).\n\n"
<< " --intrinsic <xml file>\n"
<< " XML file containing computed intrinsic camera parameters (default: empty).\n\n"
<< " --hd_stream\n"
<< " Enables HD 720p streaming instead of default 480p.\n"
<< " Allows to increase range and accuracy of the tag detection,\n"
<< " but increases latency and computation time.\n"
<< " Caution: camera calibration settings are different for the two resolutions.\n"
<< " Make sure that if you pass custom intrinsic camera parameters,\n"
<< " they were obtained with the correct resolution.\n\n"
<< " --verbose, -v\n"
<< " Enables verbose (drone information messages and velocity commands\n"
<< " are then displayed).\n\n"
<< " --help, -h\n"
<< " Print help message.\n"
<< std::endl;
return EXIT_SUCCESS;
}
else {
std::cout << "Error : tag size parameter required." << std::endl << "See " << argv[0] << " --help" << std::endl;
return EXIT_FAILURE;
}
std::cout
<< "\nWARNING: \n - This program does no sensing or avoiding of "
"obstacles, \n"
"the drone WILL collide with any objects in the way! Make sure "
"the \n"
"drone has approximately 3 meters of free space on all sides.\n"
" - The drone uses a downward-facing camera for horizontal speed estimation,\n make sure the drone flies "
"above a non-uniform flooring,\n or its movement will be inacurate and dangerous !\n"
<< std::endl;
verbose, true, ip_address); // Create the drone with desired verbose level, settings reset, and corresponding IP
if (drone.isRunning()) {
drone.setVideoResolution(stream_res); // Set video resolution to 480p (default) or 720p
drone.setStreamingMode(0); // Set lowest latency stream mode
drone.setVideoStabilisationMode(0); // Disable video stabilisation
drone.doFlatTrim(); // Flat trim calibration
drone.startStreaming(); // Start streaming and decoding video data
drone.setExposure(1.5f); // Set exposure to max so that the aprilTag detection is more efficient
drone.setCameraOrientation(-5., 0.,
true); // Set camera to look slightly down so that the drone is slightly above the tag
drone.takeOff(true); // Take off
drone.getGrayscaleImage(I);
#if defined(VISP_HAVE_X11)
vpDisplayX display;
#elif defined(VISP_HAVE_GTK)
vpDisplayGTK display;
#elif defined(VISP_HAVE_GDI)
vpDisplayGDI display;
#elif defined(HAVE_OPENCV_HIGHGUI)
vpDisplayOpenCV display;
#endif
int orig_displayX = 100;
int orig_displayY = 100;
display.init(I, orig_displayX, orig_displayY, "DRONE VIEW");
vpPlot plotter(1, 700, 700, orig_displayX + static_cast<int>(I.getWidth()) + 20, orig_displayY,
"Visual servoing tasks");
unsigned int iter = 0;
vpDetectorAprilTag detector(tagFamily); // The detector used to detect Apritags
detector.setAprilTagQuadDecimate(4.0);
detector.setAprilTagNbThreads(4);
detector.setDisplayTag(true);
if (opt_has_cam_parameters) {
if (p.parse(cam, opt_cam_parameters, "Camera", projModel, I.getWidth(), I.getHeight()) !=
std::cout << "Cannot find parameters in XML file " << opt_cam_parameters << std::endl;
if (drone.getVideoHeight() == 720) { // 720p streaming
cam.initPersProjWithoutDistortion(785.6412585, 785.3322447, 637.9049857, 359.7524531);
}
else { // 480p streaming
cam.initPersProjWithoutDistortion(531.9213063, 520.8495788, 429.133986, 240.9464457);
}
}
}
else {
std::cout << "Setting default camera parameters ... " << std::endl;
if (drone.getVideoHeight() == 720) { // 720p streaming
cam.initPersProjWithoutDistortion(785.6412585, 785.3322447, 637.9049857, 359.7524531);
}
else { // 480p streaming
cam.initPersProjWithoutDistortion(531.9213063, 520.8495788, 429.133986, 240.9464457);
}
}
vpServo task; // Visual servoing task
// double lambda = 0.5;
vpAdaptiveGain lambda = vpAdaptiveGain(1.5, 0.7, 30);
task.setLambda(lambda);
/*
In the following section, camera 1 refers to camera coordonates system of the drone, but without taking camera
pan and camera tilt into account.
Those values are taken into consideration in Camera 2.
E is the effective coordinate system of the drone, the one in which we need to convert every velocity command.
We can easily compute homogeneous matrix between camera 1 and camera 2, and between camera 1
and effective coordonate system E of the drone.
Using those matrices, we can in the end obtain the matrix between c2 and E
*/
vpRxyzVector c1_rxyz_c2(vpMath::rad(drone.getCurrentCameraTilt()), vpMath::rad(drone.getCurrentCameraPan()), 0);
vpRotationMatrix c1Rc2(c1_rxyz_c2); // Rotation between camera 1 and 2
vpHomogeneousMatrix c1Mc2(vpTranslationVector(), c1Rc2); // Homogeneous matrix between c1 and c2
vpRotationMatrix c1Re { 0, 1, 0, 0, 0, 1, 1, 0, 0 }; // Rotation between camera 1 and E
vpTranslationVector c1te(0, 0, -0.09); // Translation between camera 1 and E
vpHomogeneousMatrix c1Me(c1te, c1Re); // Homogeneous matrix between c1 and E
vpHomogeneousMatrix c2Me = c1Mc2.inverse() * c1Me; // Homogeneous matrix between c2 and E
task.set_cVe(cVe);
vpMatrix eJe(6, 4, 0);
eJe[0][0] = 1;
eJe[1][1] = 1;
eJe[2][2] = 1;
eJe[5][3] = 1;
// double Z_d = 1.; // Desired distance to the target
double Z_d = (opt_has_distance_to_tag ? opt_distance_to_tag : 1.);
// Define the desired polygon corresponding the the AprilTag CLOCKWISE
double X[4] = { tagSize / 2., tagSize / 2., -tagSize / 2., -tagSize / 2. };
double Y[4] = { tagSize / 2., -tagSize / 2., -tagSize / 2., tagSize / 2. };
std::vector<vpPoint> vec_P, vec_P_d;
for (int i = 0; i < 4; i++) {
vpPoint P_d(X[i], Y[i], 0);
vpHomogeneousMatrix cdMo(0, 0, Z_d, 0, 0, 0);
P_d.track(cdMo); //
vec_P_d.push_back(P_d);
}
vpMomentObject m_obj(3), m_obj_d(3);
vpMomentDatabase mdb, mdb_d;
vpMomentBasic mb_d; // Here only to get the desired area m00
vpMomentCentered mc, mc_d;
vpMomentAreaNormalized man(0, Z_d), man_d(0, Z_d); // Declare normalized area updated below with m00
vpMomentGravityCenterNormalized mgn, mgn_d; // Declare normalized gravity center
// Desired moments
m_obj_d.setType(vpMomentObject::DENSE_POLYGON); // Consider the AprilTag as a polygon
m_obj_d.fromVector(vec_P_d); // Initialize the object with the points coordinates
mb_d.linkTo(mdb_d); // Add basic moments to database
mg_d.linkTo(mdb_d); // Add gravity center to database
mc_d.linkTo(mdb_d); // Add centered moments to database
man_d.linkTo(mdb_d); // Add area normalized to database
mgn_d.linkTo(mdb_d); // Add gravity center normalized to database
mdb_d.updateAll(m_obj_d); // All of the moments must be updated, not just an_d
mg_d.compute(); // Compute gravity center moment
mc_d.compute(); // Compute centered moments AFTER gravity center
double area = 0;
if (m_obj_d.getType() == vpMomentObject::DISCRETE)
area = mb_d.get(2, 0) + mb_d.get(0, 2);
else
area = mb_d.get(0, 0);
// Update moment with the desired area
man_d.setDesiredArea(area);
man_d.compute(); // Compute area normalized moment AFTER centered moments
mgn_d.compute(); // Compute gravity center normalized moment AFTER area normalized moment
// Desired plane
double A = 0.0;
double B = 0.0;
double C = 1.0 / Z_d;
// Construct area normalized features
vpFeatureMomentGravityCenterNormalized s_mgn(mdb, A, B, C), s_mgn_d(mdb_d, A, B, C);
vpFeatureMomentAreaNormalized s_man(mdb, A, B, C), s_man_d(mdb_d, A, B, C);
// Add the features
task.addFeature(s_mgn, s_mgn_d);
task.addFeature(s_man, s_man_d);
plotter.initGraph(0, 4);
plotter.setLegend(0, 0, "Xn"); // Distance from center on X axis feature
plotter.setLegend(0, 1, "Yn"); // Distance from center on Y axis feature
plotter.setLegend(0, 2, "an"); // Tag area feature
plotter.setLegend(0, 3, "atan(1/rho)"); // Vanishing point feature
// Update desired gravity center normalized feature
s_mgn_d.update(A, B, C);
s_mgn_d.compute_interaction();
// Update desired area normalized feature
s_man_d.update(A, B, C);
s_man_d.compute_interaction();
// Update desired vanishing point feature for the horizontal line
s_vp_d.setAtanOneOverRho(0);
s_vp_d.setAlpha(0);
bool runLoop = true;
bool vec_ip_has_been_sorted = false;
std::vector<std::pair<size_t, vpImagePoint> > vec_ip_sorted;
//** Visual servoing loop **//
while (drone.isRunning() && drone.isStreaming() && runLoop) {
double startTime = vpTime::measureTimeMs();
drone.getGrayscaleImage(I);
std::vector<vpHomogeneousMatrix> cMo_vec;
detector.detect(I, tagSize, cam, cMo_vec); // Detect AprilTags in current image
double t = vpTime::measureTimeMs() - startTime;
{
std::stringstream ss;
ss << "Detection time: " << t << " ms";
vpDisplay::displayText(I, 40, 20, ss.str(), vpColor::red);
}
if (detector.getNbObjects() == 1) {
// Update current points used to compute the moments
std::vector<vpImagePoint> vec_ip = detector.getPolygon(0);
vec_P.clear();
for (size_t i = 0; i < vec_ip.size(); i++) { // size = 4
double x = 0, y = 0;
vpPixelMeterConversion::convertPoint(cam, vec_ip[i], x, y);
P.set_x(x);
P.set_y(y);
vec_P.push_back(P);
}
// Current moments
m_obj.setType(vpMomentObject::DENSE_POLYGON); // Consider the AprilTag as a polygon
m_obj.fromVector(vec_P); // Initialize the object with the points coordinates
mg.linkTo(mdb); // Add gravity center to database
mc.linkTo(mdb); // Add centered moments to database
man.linkTo(mdb); // Add area normalized to database
mgn.linkTo(mdb); // Add gravity center normalized to database
mdb.updateAll(m_obj); // All of the moments must be updated, not just an_d
mg.compute(); // Compute gravity center moment
mc.compute(); // Compute centered moments AFTER gravity center
man.setDesiredArea(area); // Desired area was init at 0 (unknow at construction), need to be updated here
man.compute(); // Compute area normalized moment AFTER centered moment
mgn.compute(); // Compute gravity center normalized moment AFTER area normalized moment
s_mgn.update(A, B, C);
s_mgn.compute_interaction();
s_man.update(A, B, C);
s_man.compute_interaction();
/* Sort points from their height in the image, and keep original indexes.
This is done once, in order to be independent from the orientation of the tag
when detecting vanishing points. */
if (!vec_ip_has_been_sorted) {
for (size_t i = 0; i < vec_ip.size(); i++) {
// Add the points and their corresponding index
std::pair<size_t, vpImagePoint> index_pair = std::pair<size_t, vpImagePoint>(i, vec_ip[i]);
vec_ip_sorted.push_back(index_pair);
}
// Sort the points and indexes from the v value of the points
std::sort(vec_ip_sorted.begin(), vec_ip_sorted.end(), compareImagePoint);
vec_ip_has_been_sorted = true;
}
// Use the two highest points for the first line, and the two others for the second line.
vpFeatureBuilder::create(s_vp, cam, vec_ip[vec_ip_sorted[0].first], vec_ip[vec_ip_sorted[1].first],
vec_ip[vec_ip_sorted[2].first], vec_ip[vec_ip_sorted[3].first],
task.set_cVe(cVe);
task.set_eJe(eJe);
// Compute the control law. Velocities are computed in the mobile robot reference frame
// Sending the control law to the drone
if (verbose) {
std::cout << "ve: " << ve.t() << std::endl;
}
drone.setVelocity(ve, 1.0);
for (size_t i = 0; i < 4; i++) {
vpDisplay::displayCross(I, vec_ip[i], 15, vpColor::red, 1);
std::stringstream ss;
ss << i;
vpDisplay::displayText(I, vec_ip[i] + vpImagePoint(15, 15), ss.str(), vpColor::green);
}
// Display visual features
vpDisplay::displayPolygon(I, vec_ip, vpColor::green, 3); // Current polygon used to compure an moment
vpDisplay::displayCross(I, detector.getCog(0), 15, vpColor::green,
3); // Current polygon used to compute a moment
vpDisplay::displayLine(I, 0, static_cast<int>(cam.get_u0()), static_cast<int>(I.getHeight()) - 1,
static_cast<int>(cam.get_u0()), vpColor::red,
3); // Vertical line as desired x position
vpDisplay::displayLine(I, static_cast<int>(cam.get_v0()), 0, static_cast<int>(cam.get_v0()),
static_cast<int>(I.getWidth()) - 1, vpColor::red,
3); // Horizontal line as desired y position
// Display lines corresponding to the vanishing point for the horizontal lines
vpDisplay::displayLine(I, vec_ip[vec_ip_sorted[0].first], vec_ip[vec_ip_sorted[1].first], vpColor::red, 1,
false);
vpDisplay::displayLine(I, vec_ip[vec_ip_sorted[2].first], vec_ip[vec_ip_sorted[3].first], vpColor::red, 1,
false);
}
else {
std::stringstream sserr;
sserr << "Failed to detect an Apriltag, or detected multiple ones";
vpDisplay::displayText(I, 120, 20, sserr.str(), vpColor::red);
drone.stopMoving(); // In this case, we stop the drone
}
vpDisplay::displayText(I, 10, 10, "Click to exit", vpColor::red);
if (vpDisplay::getClick(I, false)) {
drone.land();
runLoop = false;
}
plotter.plot(0, iter, task.getError());
double totalTime = vpTime::measureTimeMs() - startTime;
std::stringstream sstime;
sstime << "Total time: " << totalTime << " ms";
vpDisplay::displayText(I, 80, 20, sstime.str(), vpColor::red);
iter++;
vpTime::wait(startTime, 40.0); // We wait a total of 40 milliseconds
}
return EXIT_SUCCESS;
}
else {
std::cout << "ERROR : failed to setup drone control." << std::endl;
return EXIT_FAILURE;
}
}
catch (const vpException &e) {
std::cout << "Caught an exception: " << e << std::endl;
return EXIT_FAILURE;
}
}
#endif // #elif !defined(VISP_HAVE_FFMPEG)
Adaptive gain computation.
Generic class defining intrinsic camera parameters.
void initPersProjWithoutDistortion(double px, double py, double u0, double v0)
@ perspectiveProjWithoutDistortion
Perspective projection without distortion model.
Implementation of column vector and the associated operations.
Definition: vpColVector.h:191
vpRowVector t() const
static const vpColor red
Definition: vpColor.h:217
static const vpColor green
Definition: vpColor.h:220
@ TAG_36h11
AprilTag 36h11 pattern (recommended)
Display for windows using GDI (available on any windows 32 platform).
Definition: vpDisplayGDI.h:130
The vpDisplayGTK allows to display image using the GTK 3rd party library. Thus to enable this class G...
Definition: vpDisplayGTK.h:133
The vpDisplayOpenCV allows to display image using the OpenCV library. Thus to enable this class OpenC...
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
static void display(const vpImage< unsigned char > &I)
static void displayLine(const vpImage< unsigned char > &I, const vpImagePoint &ip1, const vpImagePoint &ip2, const vpColor &color, unsigned int thickness=1, bool segment=true)
static void displayCross(const vpImage< unsigned char > &I, const vpImagePoint &ip, unsigned int size, const vpColor &color, unsigned int thickness=1)
static void flush(const vpImage< unsigned char > &I)
static void displayText(const vpImage< unsigned char > &I, const vpImagePoint &ip, const std::string &s, const vpColor &color)
static void displayPolygon(const vpImage< unsigned char > &I, const std::vector< vpImagePoint > &vip, const vpColor &color, unsigned int thickness=1, bool closed=true)
error that can be emitted by ViSP classes.
Definition: vpException.h:60
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpImagePoint &t)
Functionality computation for normalized surface moment feature. Computes the interaction matrix asso...
Functionality computation for centered and normalized moment feature. Computes the interaction matrix...
static unsigned int selectAtanOneOverRho()
void setAlpha(double alpha)
Set vanishing point feature value.
void setAtanOneOverRho(double atan_one_over_rho)
Set vanishing point feature value.
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:82
unsigned int getWidth() const
Definition: vpImage.h:242
unsigned int getHeight() const
Definition: vpImage.h:181
static double rad(double deg)
Definition: vpMath.h:129
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:169
Class handling the normalized surface moment that is invariant in scale and used to estimate depth.
This class defines the 2D basic moment . This class is a wrapper for vpMomentObject which allows to u...
Definition: vpMomentBasic.h:73
const std::vector< double > & get() const
This class defines the double-indexed centered moment descriptor .
This class allows to register all vpMoments so they can access each other according to their dependen...
virtual void updateAll(vpMomentObject &object)
Class describing 2D normalized gravity center moment.
Class describing 2D gravity center moment.
Class for generic objects.
void linkTo(vpMomentDatabase &moments)
Definition: vpMoment.cpp:114
static void convertPoint(const vpCameraParameters &cam, const double &u, const double &v, double &x, double &y)
This class enables real time drawing of 2D or 3D graphics. An instance of the class open a window whi...
Definition: vpPlot.h:112
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:79
void set_x(double x)
Set the point x coordinate in the image plane.
Definition: vpPoint.cpp:464
void set_y(double y)
Set the point y coordinate in the image plane.
Definition: vpPoint.cpp:466
Implementation of a rotation matrix and operations on such kind of matrices.
Implementation of a rotation vector as Euler angle minimal representation.
Definition: vpRxyzVector.h:183
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:380
@ EYEINHAND_L_cVe_eJe
Definition: vpServo.h:168
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:331
void set_cVe(const vpVelocityTwistMatrix &cVe_)
Definition: vpServo.h:1038
void setLambda(double c)
Definition: vpServo.h:986
void set_eJe(const vpMatrix &eJe_)
Definition: vpServo.h:1101
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:134
vpColVector getError() const
Definition: vpServo.h:510
vpColVector computeControlLaw()
Definition: vpServo.cpp:705
@ CURRENT
Definition: vpServo.h:202
Class that consider the case of a translation vector.
XML parser to load and save intrinsic camera parameters.
int parse(vpCameraParameters &cam, const std::string &filename, const std::string &camera_name, const vpCameraParameters::vpCameraParametersProjType &projModel, unsigned int image_width=0, unsigned int image_height=0, bool verbose=true)
VISP_EXPORT int wait(double t0, double t)
VISP_EXPORT double measureTimeMs()