Example of eye-in-hand image-based control law. We control here a real robot, the FLIR PTU that has 2 degrees of freedom. The velocity is computed in the joint space. Visual features are the image coordinates of the center of gravity of an AprilTag. The goal is here to center the tag in the image acquired from a FLIR camera mounted on the PTU.
Camera extrinsic (eMc) parameters are set by default to a value that will not match Your configuration. Use –eMc command line option to read the values from a file. This file could be obtained following extrinsic camera calibration tutorial: https://visp-doc.inria.fr/doxygen/visp-daily/tutorial-calibration-extrinsic.html
Camera intrinsic parameters are retrieved from the Realsense SDK.
The target is an AprilTag. It's size doesn't matter since we are using the center of gravity position.
#include <iostream>
#include <visp3/core/vpCameraParameters.h>
#include <visp3/core/vpConfig.h>
#include <visp3/detection/vpDetectorAprilTag.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/gui/vpPlot.h>
#include <visp3/io/vpImageIo.h>
#include <visp3/robot/vpRobotFlirPtu.h>
#include <visp3/sensor/vpFlyCaptureGrabber.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeaturePoint.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>
#if defined(VISP_HAVE_FLIR_PTU_SDK) && defined(VISP_HAVE_FLYCAPTURE) && \
(defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI))
int main(int argc, char **argv)
{
#ifdef ENABLE_VISP_NAMESPACE
#endif
std::string opt_portname;
int opt_baudrate = 9600;
bool opt_network = false;
std::string opt_extrinsic;
double opt_tag_size = 0.120;
double opt_constant_gain = 0.5;
if (argc == 1) {
std::cout << "To see how to use this example, run: " << argv[0] << " --help" << std::endl;
return EXIT_SUCCESS;
}
for (int i = 1; i < argc; i++) {
if ((std::string(argv[i]) == "--portname" || std::string(argv[i]) == "-p") && (i + 1 < argc)) {
opt_portname = std::string(argv[i + 1]);
}
else if ((std::string(argv[i]) == "--baudrate" || std::string(argv[i]) == "-b") && (i + 1 < argc)) {
opt_baudrate = std::atoi(argv[i + 1]);
}
else if ((std::string(argv[i]) == "--network" || std::string(argv[i]) == "-n")) {
opt_network = true;
}
else if (std::string(argv[i]) == "--extrinsic" && i + 1 < argc) {
opt_extrinsic = std::string(argv[i + 1]);
}
else if (std::string(argv[i]) == "--constant-gain" || std::string(argv[i]) == "-g") {
opt_constant_gain = std::stod(argv[i + 1]);
;
}
else if (std::string(argv[i]) == "--help" || std::string(argv[i]) == "-h") {
std::cout << "SYNOPSIS" << std::endl
<< " " << argv[0] << " [--portname <portname>] [--baudrate <rate>] [--network] "
<< "[--extrinsic <extrinsic.yaml>] [--constant-gain] [--help] [-h]" << std::endl
<< std::endl;
std::cout << "DESCRIPTION" << std::endl
<< " --portname, -p <portname>" << std::endl
<< " Set serial or tcp port name." << std::endl
<< std::endl
<< " --baudrate, -b <rate>" << std::endl
<< " Set serial communication baud rate. Default: " << opt_baudrate << "." << std::endl
<< std::endl
<< " --network, -n" << std::endl
<< " Get PTU network information (Hostname, IP, Gateway) and exit. " << std::endl
<< std::endl
<< " --extrinsic <extrinsic.yaml>" << std::endl
<< " YAML file containing extrinsic camera parameters as a vpHomogeneousMatrix." << std::endl
<< " It corresponds to the homogeneous transformation eMc, between end-effector" << std::endl
<< " and camera frame." << std::endl
<< std::endl
<< " --constant-gain, -g" << std::endl
<< " Constant gain value. Default value: " << opt_constant_gain << std::endl
<< std::endl
<< " --help, -h" << std::endl
<< " Print this helper message. " << std::endl
<< std::endl;
std::cout << "EXAMPLE" << std::endl
<< " - How to get network IP" << std::endl
#ifdef _WIN32
<< " $ " << argv[0] << " --portname COM1 --network" << std::endl
<< " Try to connect FLIR PTU to port: COM1 with baudrate: 9600" << std::endl
#else
<< " $ " << argv[0] << " --portname /dev/ttyUSB0 --network" << std::endl
<< " Try to connect FLIR PTU to port: /dev/ttyUSB0 with baudrate: 9600" << std::endl
#endif
<< " PTU HostName: PTU-5" << std::endl
<< " PTU IP : 169.254.110.254" << std::endl
<< " PTU Gateway : 0.0.0.0" << std::endl
<< " - How to run this binary using network communication" << std::endl
<< " $ " << argv[0] << " --portname tcp:169.254.110.254 --tag-size 0.1 --gain 0.1" << std::endl;
return EXIT_SUCCESS;
}
}
try {
std::cout << "Try to connect FLIR PTU to port: " << opt_portname << " with baudrate: " << opt_baudrate << std::endl;
robot.connect(opt_portname, opt_baudrate);
if (opt_network) {
std::cout << "PTU HostName: " << robot.getNetworkHostName() << std::endl;
std::cout << "PTU IP : " << robot.getNetworkIP() << std::endl;
std::cout << "PTU Gateway : " << robot.getNetworkGateway() << std::endl;
return EXIT_SUCCESS;
}
eRc << 0, 0, 1, -1, 0, 0, 0, -1, 0;
etc << -0.1, -0.123, 0.035;
if (!opt_extrinsic.empty()) {
}
std::cout << "Considered extrinsic transformation eMc:\n" << eMc << std::endl;
std::cout << "Considered intrinsic camera parameters:\n" << cam << "\n";
#if defined(VISP_HAVE_X11)
vpDisplayX dc(I, 10, 10, "Color image");
#elif defined(VISP_HAVE_GDI)
#endif
bool final_quit = false;
bool send_velocities = false;
robot.set_eMc(eMc);
std::vector<vpHomogeneousMatrix> cMo_vec;
while (!final_quit) {
detector.
detect(I, opt_tag_size, cam, cMo_vec);
std::stringstream ss;
ss << "Left click to " << (send_velocities ? "stop the robot" : "servo the robot") << ", right click to quit.";
double Z = cMo_vec[0][2][3];
double x = 0, y = 0;
}
else {
qdot = 0;
}
if (!send_velocities) {
qdot = 0;
}
switch (button) {
send_velocities = !send_velocities;
break;
final_quit = true;
qdot = 0;
break;
default:
break;
}
}
}
std::cout << "Stop the robot " << std::endl;
}
std::cout <<
"Catch Flir Ptu exception: " << e.
getMessage() << std::endl;
}
return EXIT_SUCCESS;
}
#else
int main()
{
#if !defined(VISP_HAVE_FLYCAPTURE)
std::cout << "Install FLIR Flycapture" << std::endl;
#endif
#if !defined(VISP_HAVE_FLIR_PTU_SDK)
std::cout << "Install FLIR PTU SDK." << std::endl;
#endif
return EXIT_SUCCESS;
}
#endif
static bool loadYAML(const std::string &filename, vpArray2D< Type > &A, char *header=nullptr)
Generic class defining intrinsic camera parameters.
Implementation of column vector and the associated operations.
void setDisplayTag(bool display, const vpColor &color=vpColor::none, unsigned int thickness=2)
void setAprilTagQuadDecimate(float quadDecimate)
bool detect(const vpImage< unsigned char > &I) VP_OVERRIDE
@ TAG_36h11
AprilTag 36h11 pattern (recommended)
void setAprilTagPoseEstimationMethod(const vpPoseEstimationMethod &poseEstimationMethod)
size_t getNbObjects() const
vpImagePoint getCog(size_t i) const
Display for windows using GDI (available on any windows 32 platform).
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
static void display(const vpImage< unsigned char > &I)
static void flush(const vpImage< unsigned char > &I)
static void displayText(const vpImage< unsigned char > &I, const vpImagePoint &ip, const std::string &s, const vpColor &color)
const char * getMessage() const
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
void set_xyZ(double x, double y, double Z)
void open(vpImage< unsigned char > &I)
void acquire(vpImage< unsigned char > &I)
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix & buildFrom(const vpTranslationVector &t, const vpRotationMatrix &R)
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
unsigned int getWidth() const
unsigned int getHeight() const
Implementation of a matrix and operations on matrices.
static void convertPoint(const vpCameraParameters &cam, const double &u, const double &v, double &x, double &y)
Implementation of a pose vector and operations on poses.
Error that can be emitted by the vpRobot class and its derivatives.
void get_eJe(vpMatrix &eJe) VP_OVERRIDE
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) VP_OVERRIDE
@ STATE_VELOCITY_CONTROL
Initialize the velocity controller.
@ STATE_STOP
Stops robot motion especially in velocity and acceleration control.
virtual vpRobotStateType setRobotState(const vpRobot::vpRobotStateType newState)
Implementation of a rotation matrix and operations on such kind of matrices.
static void display(const vpServo &s, const vpCameraParameters &cam, const vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
void set_cVe(const vpVelocityTwistMatrix &cVe_)
void set_eJe(const vpMatrix &eJe_)
void setServo(const vpServoType &servo_type)
vpColVector computeControlLaw()
Class that consider the case of a translation vector.
vpVelocityTwistMatrix get_cVe() const