Visual Servoing Platform  version 3.6.1 under development (2024-05-09)
servoViper850FourPoints2DArtVelocityLs_cur.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See https://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * tests the control law
33  * eye-in-hand control
34  * velocity computed in the articular frame
35  *
36 *****************************************************************************/
48 #include <visp3/core/vpConfig.h>
49 #include <visp3/core/vpDebug.h> // Debug trace
50 
51 #include <fstream>
52 #include <iostream>
53 #include <sstream>
54 #include <stdio.h>
55 #include <stdlib.h>
56 #if (defined(VISP_HAVE_VIPER850) && defined(VISP_HAVE_DC1394))
57 
58 #include <visp3/blob/vpDot2.h>
59 #include <visp3/core/vpDisplay.h>
60 #include <visp3/core/vpHomogeneousMatrix.h>
61 #include <visp3/core/vpImage.h>
62 #include <visp3/core/vpIoTools.h>
63 #include <visp3/core/vpMath.h>
64 #include <visp3/core/vpPoint.h>
65 #include <visp3/gui/vpDisplayGTK.h>
66 #include <visp3/gui/vpDisplayOpenCV.h>
67 #include <visp3/gui/vpDisplayX.h>
68 #include <visp3/robot/vpRobotViper850.h>
69 #include <visp3/sensor/vp1394TwoGrabber.h>
70 #include <visp3/vision/vpPose.h>
71 #include <visp3/visual_features/vpFeatureBuilder.h>
72 #include <visp3/visual_features/vpFeaturePoint.h>
73 #include <visp3/vs/vpServo.h>
74 #include <visp3/vs/vpServoDisplay.h>
75 
76 #define L 0.05 // to deal with a 10cm by 10cm square
77 
99 void compute_pose(vpPoint point[], vpDot2 dot[], int ndot, vpCameraParameters cam, vpHomogeneousMatrix &cMo, bool init)
100 {
101  vpRotationMatrix cRo;
102  vpPose pose;
103  vpImagePoint cog;
104  for (int i = 0; i < ndot; i++) {
105 
106  double x = 0, y = 0;
107  cog = dot[i].getCog();
109  y); // pixel to meter conversion
110  point[i].set_x(x); // projection perspective p
111  point[i].set_y(y);
112  pose.addPoint(point[i]);
113  }
114 
115  if (init == true) {
117  } else { // init = false; use of the previous pose to initialise LOWE
118  pose.computePose(vpPose::VIRTUAL_VS, cMo);
119  }
120 }
121 
122 int main()
123 {
124  // Log file creation in /tmp/$USERNAME/log.dat
125  // This file contains by line:
126  // - the 6 computed joint velocities (m/s, rad/s) to achieve the task
127  // - the 6 mesured joint velocities (m/s, rad/s)
128  // - the 6 mesured joint positions (m, rad)
129  // - the 8 values of s - s*
130  std::string username;
131  // Get the user login name
132  vpIoTools::getUserName(username);
133 
134  // Create a log filename to save velocities...
135  std::string logdirname;
136  logdirname = "/tmp/" + username;
137 
138  // Test if the output path exist. If no try to create it
139  if (vpIoTools::checkDirectory(logdirname) == false) {
140  try {
141  // Create the dirname
142  vpIoTools::makeDirectory(logdirname);
143  } catch (...) {
144  std::cerr << std::endl << "ERROR:" << std::endl;
145  std::cerr << " Cannot create " << logdirname << std::endl;
146  return EXIT_FAILURE;
147  }
148  }
149  std::string logfilename;
150  logfilename = logdirname + "/log.dat";
151 
152  // Open the log file name
153  std::ofstream flog(logfilename.c_str());
154 
155  try {
156  vpRobotViper850 robot;
157  // Load the end-effector to camera frame transformation obtained
158  // using a camera intrinsic model with distortion
161 
162  vpServo task;
163 
165  int i;
166 
167  bool reset = false;
168  vp1394TwoGrabber g(reset);
170  g.setFramerate(vp1394TwoGrabber::vpFRAMERATE_60);
171  g.open(I);
172 
173  g.acquire(I);
174 
175 #ifdef VISP_HAVE_X11
176  vpDisplayX display(I, 100, 100, "Current image");
177 #elif defined(HAVE_OPENCV_HIGHGUI)
178  vpDisplayOpenCV display(I, 100, 100, "Current image");
179 #elif defined(VISP_HAVE_GTK)
180  vpDisplayGTK display(I, 100, 100, "Current image");
181 #endif
182 
184  vpDisplay::flush(I);
185 
186  std::cout << std::endl;
187  std::cout << "-------------------------------------------------------" << std::endl;
188  std::cout << " Test program for vpServo " << std::endl;
189  std::cout << " Eye-in-hand task control, velocity computed in the joint space" << std::endl;
190  std::cout << " Use of the Afma6 robot " << std::endl;
191  std::cout << " task : servo 4 points on a square with dimension " << L << " meters" << std::endl;
192  std::cout << "-------------------------------------------------------" << std::endl;
193  std::cout << std::endl;
194 
195  vpDot2 dot[4];
196  vpImagePoint cog;
197 
198  std::cout << "Click on the 4 dots clockwise starting from upper/left dot..." << std::endl;
199 
200  for (i = 0; i < 4; i++) {
201  dot[i].setGraphics(true);
202  dot[i].initTracking(I);
203  cog = dot[i].getCog();
205  vpDisplay::flush(I);
206  }
207 
208  vpCameraParameters cam;
209 
210  // Update camera parameters
211  robot.getCameraParameters(cam, I);
212 
213  cam.printParameters();
214 
215  // Sets the current position of the visual feature
216  vpFeaturePoint p[4];
217  for (i = 0; i < 4; i++)
218  vpFeatureBuilder::create(p[i], cam, dot[i]); // retrieve x,y of the vpFeaturePoint structure
219 
220  // Set the position of the square target in a frame which origin is
221  // centered in the middle of the square
222  vpPoint point[4];
223  point[0].setWorldCoordinates(-L, -L, 0);
224  point[1].setWorldCoordinates(L, -L, 0);
225  point[2].setWorldCoordinates(L, L, 0);
226  point[3].setWorldCoordinates(-L, L, 0);
227 
228  // Initialise a desired pose to compute s*, the desired 2D point features
230  vpTranslationVector cto(0, 0, 0.5); // tz = 0.5 meter
232  vpRotationMatrix cRo(cro); // Build the rotation matrix
233  cMo.buildFrom(cto, cRo); // Build the homogeneous matrix
234 
235  // Sets the desired position of the 2D visual feature
236  vpFeaturePoint pd[4];
237  // Compute the desired position of the features from the desired pose
238  for (int i = 0; i < 4; i++) {
239  vpColVector cP, p;
240  point[i].changeFrame(cMo, cP);
241  point[i].projection(cP, p);
242 
243  pd[i].set_x(p[0]);
244  pd[i].set_y(p[1]);
245  pd[i].set_Z(cP[2]);
246  }
247 
248  // We want to see a point on a point
249  for (i = 0; i < 4; i++)
250  task.addFeature(p[i], pd[i]);
251 
252  // Set the proportional gain
253  task.setLambda(0.3);
254 
255  // Display task information
256  task.print();
257 
258  // Define the task
259  // - we want an eye-in-hand control law
260  // - articular velocity are computed
263  task.print();
264 
266  robot.get_cVe(cVe);
267  task.set_cVe(cVe);
268  task.print();
269 
270  // Set the Jacobian (expressed in the end-effector frame)
271  vpMatrix eJe;
272  robot.get_eJe(eJe);
273  task.set_eJe(eJe);
274  task.print();
275 
276  // Initialise the velocity control of the robot
278 
279  std::cout << "\nHit CTRL-C to stop the loop...\n" << std::flush;
280  bool init_pose_from_linear_method = true;
281  for (;;) {
282  // Acquire a new image from the camera
283  g.acquire(I);
284 
285  // Display this image
287 
288  try {
289  // For each point...
290  for (i = 0; i < 4; i++) {
291  // Achieve the tracking of the dot in the image
292  dot[i].track(I);
293  // Display a green cross at the center of gravity position in the
294  // image
295  cog = dot[i].getCog();
297  }
298  } catch (...) {
299  flog.close(); // Close the log file
300  vpTRACE("Error detected while tracking visual features");
301  robot.stopMotion();
302  return EXIT_FAILURE;
303  }
304 
305  // At first iteration, we initialise non linear pose estimation with a linear approach.
306  // For the other iterations, non linear pose estimation is initialized with the pose estimated at previous
307  // iteration of the loop
308  compute_pose(point, dot, 4, cam, cMo, init_pose_from_linear_method);
309  if (init_pose_from_linear_method) {
310  init_pose_from_linear_method = false;
311  }
312 
313  for (i = 0; i < 4; i++) {
314  // Update the point feature from the dot location
315  vpFeatureBuilder::create(p[i], cam, dot[i]);
316  // Set the feature Z coordinate from the pose
317  vpColVector cP;
318  point[i].changeFrame(cMo, cP);
319 
320  p[i].set_Z(cP[2]);
321  }
322 
323  // Get the jacobian of the robot
324  robot.get_eJe(eJe);
325  // Update this jacobian in the task structure. It will be used to
326  // compute the velocity skew (as an articular velocity) qdot = -lambda *
327  // L^+ * cVe * eJe * (s-s*)
328  task.set_eJe(eJe);
329 
330  vpColVector v;
331  // Compute the visual servoing skew vector
332  v = task.computeControlLaw();
333 
334  // Display the current and desired feature points in the image display
335  vpServoDisplay::display(task, cam, I);
336 
337  // Apply the computed joint velocities to the robot
339 
340  // Save velocities applied to the robot in the log file
341  // v[0], v[1], v[2] correspond to joint translation velocities in m/s
342  // v[3], v[4], v[5] correspond to joint rotation velocities in rad/s
343  flog << v[0] << " " << v[1] << " " << v[2] << " " << v[3] << " " << v[4] << " " << v[5] << " ";
344 
345  // Get the measured joint velocities of the robot
346  vpColVector qvel;
348  // Save measured joint velocities of the robot in the log file:
349  // - qvel[0], qvel[1], qvel[2] correspond to measured joint translation
350  // velocities in m/s
351  // - qvel[3], qvel[4], qvel[5] correspond to measured joint rotation
352  // velocities in rad/s
353  flog << qvel[0] << " " << qvel[1] << " " << qvel[2] << " " << qvel[3] << " " << qvel[4] << " " << qvel[5] << " ";
354 
355  // Get the measured joint positions of the robot
356  vpColVector q;
357  robot.getPosition(vpRobot::ARTICULAR_FRAME, q);
358  // Save measured joint positions of the robot in the log file
359  // - q[0], q[1], q[2] correspond to measured joint translation
360  // positions in m
361  // - q[3], q[4], q[5] correspond to measured joint rotation
362  // positions in rad
363  flog << q[0] << " " << q[1] << " " << q[2] << " " << q[3] << " " << q[4] << " " << q[5] << " ";
364 
365  // Save feature error (s-s*) for the 4 feature points. For each feature
366  // point, we have 2 errors (along x and y axis). This error is
367  // expressed in meters in the camera frame
368  flog << (task.getError()).t() << std::endl;
369 
370  // Flush the display
371  vpDisplay::flush(I);
372 
373  // std::cout << "|| s - s* || = " << ( task.getError() ).sumSquare() <<
374  // std::endl;
375  }
376 
377  std::cout << "Display task information: " << std::endl;
378  task.print();
379  flog.close(); // Close the log file
380  return EXIT_SUCCESS;
381  } catch (const vpException &e) {
382  flog.close(); // Close the log file
383  std::cout << "Catch an exception: " << e.getMessage() << std::endl;
384  return EXIT_FAILURE;
385  }
386 }
387 
388 #else
389 int main()
390 {
391  std::cout << "You do not have an Viper 850 robot connected to your computer..." << std::endl;
392  return EXIT_SUCCESS;
393 }
394 #endif
Class for firewire ieee1394 video devices using libdc1394-2.x api.
Generic class defining intrinsic camera parameters.
@ perspectiveProjWithDistortion
Perspective projection with distortion model.
Implementation of column vector and the associated operations.
Definition: vpColVector.h:163
static const vpColor blue
Definition: vpColor.h:217
static const vpColor green
Definition: vpColor.h:214
The vpDisplayGTK allows to display image using the GTK 3rd party library. Thus to enable this class G...
Definition: vpDisplayGTK.h:128
The vpDisplayOpenCV allows to display image using the OpenCV library. Thus to enable this class OpenC...
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
Definition: vpDisplayX.h:128
static void display(const vpImage< unsigned char > &I)
static void displayCross(const vpImage< unsigned char > &I, const vpImagePoint &ip, unsigned int size, const vpColor &color, unsigned int thickness=1)
static void flush(const vpImage< unsigned char > &I)
This tracker is meant to track a blob (connex pixels with same gray level) on a vpImage.
Definition: vpDot2.h:124
void track(const vpImage< unsigned char > &I, bool canMakeTheWindowGrow=true)
Definition: vpDot2.cpp:435
void setGraphics(bool activate)
Definition: vpDot2.h:310
vpImagePoint getCog() const
Definition: vpDot2.h:176
void initTracking(const vpImage< unsigned char > &I, unsigned int size=0)
Definition: vpDot2.cpp:254
error that can be emitted by ViSP classes.
Definition: vpException.h:59
const char * getMessage() const
Definition: vpException.cpp:64
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
void set_y(double y)
void set_x(double x)
void set_Z(double Z)
Implementation of an homogeneous matrix and operations on such kind of matrices.
void buildFrom(const vpTranslationVector &t, const vpRotationMatrix &R)
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:82
void init(unsigned int h, unsigned int w, Type value)
Definition: vpImage.h:619
static bool checkDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:832
static std::string getUserName()
Definition: vpIoTools.cpp:725
static void makeDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:981
static double rad(double deg)
Definition: vpMath.h:127
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:146
static void convertPoint(const vpCameraParameters &cam, const double &u, const double &v, double &x, double &y)
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:77
void set_x(double x)
Set the point x coordinate in the image plane.
Definition: vpPoint.cpp:504
void projection(const vpColVector &_cP, vpColVector &_p) const vp_override
Definition: vpPoint.cpp:225
void changeFrame(const vpHomogeneousMatrix &cMo, vpColVector &cP) const vp_override
Definition: vpPoint.cpp:242
void setWorldCoordinates(double oX, double oY, double oZ)
Definition: vpPoint.cpp:110
void set_y(double y)
Set the point y coordinate in the image plane.
Definition: vpPoint.cpp:506
Class used for pose computation from N points (pose from point only). Some of the algorithms implemen...
Definition: vpPose.h:78
void addPoint(const vpPoint &P)
Definition: vpPose.cpp:93
@ DEMENTHON_LAGRANGE_VIRTUAL_VS
Definition: vpPose.h:99
@ VIRTUAL_VS
Definition: vpPose.h:93
bool computePose(vpPoseMethodType method, vpHomogeneousMatrix &cMo, bool(*func)(const vpHomogeneousMatrix &)=nullptr)
Definition: vpPose.cpp:340
void get_eJe(vpMatrix &eJe) vp_override
void getVelocity(const vpRobot::vpControlFrameType frame, vpColVector &velocity)
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) vp_override
@ ARTICULAR_FRAME
Definition: vpRobot.h:78
@ STATE_VELOCITY_CONTROL
Initialize the velocity controller.
Definition: vpRobot.h:65
virtual vpRobotStateType setRobotState(const vpRobot::vpRobotStateType newState)
Definition: vpRobot.cpp:198
Implementation of a rotation matrix and operations on such kind of matrices.
Implementation of a rotation vector as Euler angle minimal representation.
Definition: vpRxyzVector.h:176
static void display(const vpServo &s, const vpCameraParameters &cam, const vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:378
@ EYEINHAND_L_cVe_eJe
Definition: vpServo.h:162
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:329
void set_cVe(const vpVelocityTwistMatrix &cVe_)
Definition: vpServo.h:1028
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:169
void setLambda(double c)
Definition: vpServo.h:976
void set_eJe(const vpMatrix &eJe_)
Definition: vpServo.h:1091
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:132
vpColVector getError() const
Definition: vpServo.h:504
@ PSEUDO_INVERSE
Definition: vpServo.h:229
vpColVector computeControlLaw()
Definition: vpServo.cpp:703
@ CURRENT
Definition: vpServo.h:196
Class that consider the case of a translation vector.
vpVelocityTwistMatrix get_cVe() const
Definition: vpUnicycle.h:70
@ TOOL_PTGREY_FLEA2_CAMERA
Definition: vpViper850.h:122
#define vpTRACE
Definition: vpDebug.h:405
void display(vpImage< unsigned char > &I, const std::string &title)
Display a gray-scale image.