Visual Servoing Platform  version 3.6.1 under development (2024-05-09)
servoViper850FourPointsKinect.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See https://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * tests the control law
33  * eye-in-hand control
34  * velocity computed in the camera frame
35  *
36 *****************************************************************************/
47 #include <visp3/core/vpConfig.h>
48 #include <visp3/core/vpDebug.h> // Debug trace
49 
50 #include <fstream>
51 #include <iostream>
52 #include <sstream>
53 #include <stdio.h>
54 #include <stdlib.h>
55 
56 #if (defined(VISP_HAVE_VIPER850) && defined(VISP_HAVE_LIBFREENECT_AND_DEPENDENCIES))
57 
58 #include <visp3/core/vpDisplay.h>
59 #include <visp3/core/vpHomogeneousMatrix.h>
60 #include <visp3/core/vpImage.h>
61 #include <visp3/core/vpImageConvert.h>
62 #include <visp3/core/vpIoTools.h>
63 #include <visp3/core/vpMath.h>
64 #include <visp3/core/vpPoint.h>
65 #include <visp3/gui/vpDisplayGTK.h>
66 #include <visp3/gui/vpDisplayOpenCV.h>
67 #include <visp3/gui/vpDisplayX.h>
68 #include <visp3/robot/vpRobotViper850.h>
69 #include <visp3/sensor/vp1394TwoGrabber.h>
70 #include <visp3/sensor/vpKinect.h>
71 #include <visp3/vision/vpPose.h>
72 #include <visp3/visual_features/vpFeatureBuilder.h>
73 #include <visp3/visual_features/vpFeaturePoint.h>
74 #include <visp3/vs/vpServo.h>
75 
76 // Exception
77 #include <visp3/core/vpException.h>
78 #include <visp3/vs/vpServoDisplay.h>
79 
80 #include <visp3/blob/vpDot2.h>
81 #define L 0.05 // to deal with a 10cm by 10cm square
82 
104 void compute_pose(vpPoint point[], vpDot2 dot[], int ndot, vpCameraParameters cam, vpHomogeneousMatrix &cMo, bool init)
105 {
106  vpRotationMatrix cRo;
107  vpPose pose;
108  vpImagePoint cog;
109  for (int i = 0; i < ndot; i++) {
110 
111  double x = 0, y = 0;
112  cog = dot[i].getCog();
114  y); // pixel to meter conversion
115  point[i].set_x(x); // projection perspective p
116  point[i].set_y(y);
117  pose.addPoint(point[i]);
118  }
119 
120  if (init == true) {
122  } else { // init = false; use of the previous pose to initialise VIRTUAL_VS
123  pose.computePose(vpPose::VIRTUAL_VS, cMo);
124  }
125 }
126 
127 int main()
128 {
129  // Log file creation in /tmp/$USERNAME/log.dat
130  // This file contains by line:
131  // - the 6 computed joint velocities (m/s, rad/s) to achieve the task
132  // - the 6 mesured joint velocities (m/s, rad/s)
133  // - the 6 mesured joint positions (m, rad)
134  // - the 8 values of s - s*
135  std::string username;
136  // Get the user login name
137  vpIoTools::getUserName(username);
138 
139  // Create a log filename to save velocities...
140  std::string logdirname;
141  logdirname = "/tmp/" + username;
142 
143  // Test if the output path exist. If no try to create it
144  if (vpIoTools::checkDirectory(logdirname) == false) {
145  try {
146  // Create the dirname
147  vpIoTools::makeDirectory(logdirname);
148  } catch (...) {
149  std::cerr << std::endl << "ERROR:" << std::endl;
150  std::cerr << " Cannot create " << logdirname << std::endl;
151  return EXIT_FAILURE;
152  }
153  }
154  std::string logfilename;
155  logfilename = logdirname + "/log.dat";
156 
157  // Open the log file name
158  std::ofstream flog(logfilename.c_str());
159 
160  try {
161  vpRobotViper850 robot;
162  // Load the end-effector to camera frame transformation obtained
163  // using a camera intrinsic model with distortion
165  robot.init(vpRobotViper850::TOOL_GENERIC_CAMERA, projModel);
166 
167  vpServo task;
168 
170  vpImage<vpRGBa> Irgb;
171  int i;
172 
173 #ifdef VISP_HAVE_LIBFREENECT_OLD
174  // This is the way to initialize Freenect with an old version of
175  // libfreenect packages under ubuntu lucid 10.04
176  Freenect::Freenect<vpKinect> freenect;
177  vpKinect &kinect = freenect.createDevice(0);
178 #else
179  Freenect::Freenect freenect;
180  vpKinect &kinect = freenect.createDevice<vpKinect>(0);
181 #endif
182 
184  kinect.getRGB(Irgb);
185  vpImageConvert::convert(Irgb, I);
186 
187 #ifdef VISP_HAVE_X11
188  vpDisplayX display(I, 100, 100, "Current image");
189 #elif defined(HAVE_OPENCV_HIGHGUI)
190  vpDisplayOpenCV display(I, 100, 100, "Current image");
191 #elif defined(VISP_HAVE_GTK)
192  vpDisplayGTK display(I, 100, 100, "Current image");
193 #endif
194 
196  vpDisplay::flush(I);
197 
198  std::cout << std::endl;
199  std::cout << "-------------------------------------------------------" << std::endl;
200  std::cout << " Test program for vpServo " << std::endl;
201  std::cout << " Eye-in-hand task control, velocity computed in the camera space" << std::endl;
202  std::cout << " Use of the Viper850 robot " << std::endl;
203  std::cout << " task : servo 4 points on a square with dimension " << L << " meters" << std::endl;
204  std::cout << "-------------------------------------------------------" << std::endl;
205  std::cout << std::endl;
206 
207  vpDot2 dot[4];
208  vpImagePoint cog;
209 
210  std::cout << "Click on the 4 dots clockwise starting from upper/left dot..." << std::endl;
211 
212  for (i = 0; i < 4; i++) {
213  dot[i].initTracking(I);
214  cog = dot[i].getCog();
216  vpDisplay::flush(I);
217  }
218 
219  // Get Kinect Camera Parameters
220  vpCameraParameters cam;
221  // kinect.getRGBCamParameters(cam);
222 
223  robot.getCameraParameters(cam, I);
224 
225  cam.printParameters();
226 
227  // Sets the current position of the visual feature
228  vpFeaturePoint p[4];
229  for (i = 0; i < 4; i++)
230  vpFeatureBuilder::create(p[i], cam, dot[i]); // retrieve x,y of the vpFeaturePoint structure
231 
232  // Set the position of the square target in a frame which origin is
233  // centered in the middle of the square
234  vpPoint point[4];
235  point[0].setWorldCoordinates(-L, -L, 0);
236  point[1].setWorldCoordinates(L, -L, 0);
237  point[2].setWorldCoordinates(L, L, 0);
238  point[3].setWorldCoordinates(-L, L, 0);
239 
240  // Initialise a desired pose to compute s*, the desired 2D point features
242  vpTranslationVector cto(0, 0, 0.5); // tz = 0.5 meter
244  vpRotationMatrix cRo(cro); // Build the rotation matrix
245  cMo.buildFrom(cto, cRo); // Build the homogeneous matrix
246 
247  // Sets the desired position of the 2D visual feature
248  vpFeaturePoint pd[4];
249  // Compute the desired position of the features from the desired pose
250  for (int i = 0; i < 4; i++) {
251  vpColVector cP, p;
252  point[i].changeFrame(cMo, cP);
253  point[i].projection(cP, p);
254 
255  pd[i].set_x(p[0]);
256  pd[i].set_y(p[1]);
257  pd[i].set_Z(cP[2]);
258  }
259 
260  // We want to see a point on a point
261  for (i = 0; i < 4; i++)
262  task.addFeature(p[i], pd[i]);
263 
264  // Set the proportional gain
265  task.setLambda(0.5);
266 
267  // Display task information
268  task.print();
269 
270  // Define the task
271  // - we want an eye-in-hand control law
272  // - articular velocity are computed
275  task.print();
276 
277  // Initialise the velocity control of the robot
279 
280  std::cout << "\nHit CTRL-C to stop the loop...\n" << std::flush;
281  for (;;) {
282  // Acquire a new image from the kinect
283  kinect.getRGB(Irgb);
284  vpImageConvert::convert(Irgb, I);
285 
286  // Display this image
288 
289  try {
290  // For each point...
291  for (i = 0; i < 4; i++) {
292  // Achieve the tracking of the dot in the image
293  dot[i].track(I);
294  // Display a green cross at the center of gravity position in the
295  // image
296  cog = dot[i].getCog();
298  }
299  } catch (...) {
300  flog.close(); // Close the log file
301  vpTRACE("Error detected while tracking visual features");
302  robot.stopMotion();
303  kinect.stop();
304  return EXIT_FAILURE;
305  }
306 
307  // At first iteration, we initialise non linear pose estimation with a linear approach.
308  // For the other iterations, non linear pose estimation is initialized with the pose estimated at previous
309  // iteration of the loop
310  compute_pose(point, dot, 4, cam, cMo, init_pose_from_linear_method);
311  if (init_pose_from_linear_method) {
312  init_pose_from_linear_method = false;
313  }
314  for (i = 0; i < 4; i++) {
315  // Update the point feature from the dot location
316  vpFeatureBuilder::create(p[i], cam, dot[i]);
317  // Set the feature Z coordinate from the pose
318  vpColVector cP;
319  point[i].changeFrame(cMo, cP);
320 
321  p[i].set_Z(cP[2]);
322  }
323 
324  vpColVector v;
325  // Compute the visual servoing skew vector
326  v = task.computeControlLaw();
327 
328  // Display the current and desired feature points in the image display
329  vpServoDisplay::display(task, cam, I);
330 
331  // Apply the computed joint velocities to the robot
333 
334  // Save velocities applied to the robot in the log file
335  // v[0], v[1], v[2] correspond to joint translation velocities in m/s
336  // v[3], v[4], v[5] correspond to joint rotation velocities in rad/s
337  flog << v[0] << " " << v[1] << " " << v[2] << " " << v[3] << " " << v[4] << " " << v[5] << " ";
338 
339  // Get the measured joint velocities of the robot
340  vpColVector qvel;
342  // Save measured joint velocities of the robot in the log file:
343  // - qvel[0], qvel[1], qvel[2] correspond to measured joint translation
344  // velocities in m/s
345  // - qvel[3], qvel[4], qvel[5] correspond to measured joint rotation
346  // velocities in rad/s
347  flog << qvel[0] << " " << qvel[1] << " " << qvel[2] << " " << qvel[3] << " " << qvel[4] << " " << qvel[5] << " ";
348 
349  // Get the measured joint positions of the robot
350  vpColVector q;
351  robot.getPosition(vpRobot::ARTICULAR_FRAME, q);
352  // Save measured joint positions of the robot in the log file
353  // - q[0], q[1], q[2] correspond to measured joint translation
354  // positions in m
355  // - q[3], q[4], q[5] correspond to measured joint rotation
356  // positions in rad
357  flog << q[0] << " " << q[1] << " " << q[2] << " " << q[3] << " " << q[4] << " " << q[5] << " ";
358 
359  // Save feature error (s-s*) for the 4 feature points. For each feature
360  // point, we have 2 errors (along x and y axis). This error is
361  // expressed in meters in the camera frame
362  flog << (task.getError()).t() << std::endl;
363 
364  // Flush the display
365  vpDisplay::flush(I);
366 
367  // std::cout << "|| s - s* || = " << ( task.getError() ).sumSquare() <<
368  // std::endl;
369  }
370 
371  kinect.stop();
372  std::cout << "Display task information: " << std::endl;
373  task.print();
374  flog.close(); // Close the log file
375  return EXIT_SUCCESS;
376  } catch (const vpException &e) {
377  flog.close(); // Close the log file
378  std::cout << "Catch an exception: " << e.getMessage() << std::endl;
379  return EXIT_FAILURE;
380  }
381 }
382 
383 #else
384 int main()
385 {
386  std::cout << "You do not have an Viper 850 robot connected to your computer..." << std::endl;
387  return EXIT_SUCCESS;
388 }
389 #endif
Generic class defining intrinsic camera parameters.
@ perspectiveProjWithDistortion
Perspective projection with distortion model.
Implementation of column vector and the associated operations.
Definition: vpColVector.h:163
static const vpColor blue
Definition: vpColor.h:217
static const vpColor green
Definition: vpColor.h:214
The vpDisplayGTK allows to display image using the GTK 3rd party library. Thus to enable this class G...
Definition: vpDisplayGTK.h:128
The vpDisplayOpenCV allows to display image using the OpenCV library. Thus to enable this class OpenC...
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
Definition: vpDisplayX.h:128
static void display(const vpImage< unsigned char > &I)
static void displayCross(const vpImage< unsigned char > &I, const vpImagePoint &ip, unsigned int size, const vpColor &color, unsigned int thickness=1)
static void flush(const vpImage< unsigned char > &I)
This tracker is meant to track a blob (connex pixels with same gray level) on a vpImage.
Definition: vpDot2.h:124
void track(const vpImage< unsigned char > &I, bool canMakeTheWindowGrow=true)
Definition: vpDot2.cpp:435
vpImagePoint getCog() const
Definition: vpDot2.h:176
void initTracking(const vpImage< unsigned char > &I, unsigned int size=0)
Definition: vpDot2.cpp:254
error that can be emitted by ViSP classes.
Definition: vpException.h:59
const char * getMessage() const
Definition: vpException.cpp:64
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
void set_y(double y)
void set_x(double x)
void set_Z(double Z)
Implementation of an homogeneous matrix and operations on such kind of matrices.
void buildFrom(const vpTranslationVector &t, const vpRotationMatrix &R)
static void convert(const vpImage< unsigned char > &src, vpImage< vpRGBa > &dest)
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:82
void init(unsigned int h, unsigned int w, Type value)
Definition: vpImage.h:619
static bool checkDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:832
static std::string getUserName()
Definition: vpIoTools.cpp:725
static void makeDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:981
Driver for the Kinect-1 device.
Definition: vpKinect.h:110
void stop()
Definition: vpKinect.cpp:113
void start(vpKinect::vpDMResolution res=DMAP_LOW_RES)
Definition: vpKinect.cpp:73
@ DMAP_LOW_RES
Definition: vpKinect.h:125
bool getRGB(vpImage< vpRGBa > &IRGB)
Definition: vpKinect.cpp:226
static double rad(double deg)
Definition: vpMath.h:127
static void convertPoint(const vpCameraParameters &cam, const double &u, const double &v, double &x, double &y)
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:77
void set_x(double x)
Set the point x coordinate in the image plane.
Definition: vpPoint.cpp:504
void projection(const vpColVector &_cP, vpColVector &_p) const vp_override
Definition: vpPoint.cpp:225
void changeFrame(const vpHomogeneousMatrix &cMo, vpColVector &cP) const vp_override
Definition: vpPoint.cpp:242
void setWorldCoordinates(double oX, double oY, double oZ)
Definition: vpPoint.cpp:110
void set_y(double y)
Set the point y coordinate in the image plane.
Definition: vpPoint.cpp:506
Class used for pose computation from N points (pose from point only). Some of the algorithms implemen...
Definition: vpPose.h:78
void addPoint(const vpPoint &P)
Definition: vpPose.cpp:93
@ DEMENTHON_LAGRANGE_VIRTUAL_VS
Definition: vpPose.h:99
@ VIRTUAL_VS
Definition: vpPose.h:93
bool computePose(vpPoseMethodType method, vpHomogeneousMatrix &cMo, bool(*func)(const vpHomogeneousMatrix &)=nullptr)
Definition: vpPose.cpp:340
void getVelocity(const vpRobot::vpControlFrameType frame, vpColVector &velocity)
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) vp_override
@ ARTICULAR_FRAME
Definition: vpRobot.h:78
@ CAMERA_FRAME
Definition: vpRobot.h:82
@ STATE_VELOCITY_CONTROL
Initialize the velocity controller.
Definition: vpRobot.h:65
virtual vpRobotStateType setRobotState(const vpRobot::vpRobotStateType newState)
Definition: vpRobot.cpp:198
Implementation of a rotation matrix and operations on such kind of matrices.
Implementation of a rotation vector as Euler angle minimal representation.
Definition: vpRxyzVector.h:176
static void display(const vpServo &s, const vpCameraParameters &cam, const vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:378
@ EYEINHAND_CAMERA
Definition: vpServo.h:155
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:329
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:169
void setLambda(double c)
Definition: vpServo.h:976
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:132
vpColVector getError() const
Definition: vpServo.h:504
@ PSEUDO_INVERSE
Definition: vpServo.h:229
vpColVector computeControlLaw()
Definition: vpServo.cpp:703
@ CURRENT
Definition: vpServo.h:196
Class that consider the case of a translation vector.
@ TOOL_GENERIC_CAMERA
Definition: vpViper850.h:124
#define vpTRACE
Definition: vpDebug.h:405
void display(vpImage< unsigned char > &I, const std::string &title)
Display a gray-scale image.