Visual Servoing Platform  version 3.6.1 under development (2024-04-26)
servoSimuFourPoints2DPolarCamVelocityDisplay.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See https://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * Simulation of a 2D visual servoing using 4 points with polar
33  * coordinates as visual feature.
34  *
35 *****************************************************************************/
36 
53 #include <visp3/core/vpConfig.h>
54 #include <visp3/core/vpDebug.h>
55 
56 #if (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GTK) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_OPENCV))
57 
58 #include <stdio.h>
59 #include <stdlib.h>
60 
61 #include <visp3/core/vpCameraParameters.h>
62 #include <visp3/core/vpHomogeneousMatrix.h>
63 #include <visp3/core/vpImage.h>
64 #include <visp3/core/vpImagePoint.h>
65 #include <visp3/core/vpIoTools.h>
66 #include <visp3/core/vpMath.h>
67 #include <visp3/core/vpMeterPixelConversion.h>
68 #include <visp3/gui/vpDisplayGDI.h>
69 #include <visp3/gui/vpDisplayGTK.h>
70 #include <visp3/gui/vpDisplayOpenCV.h>
71 #include <visp3/gui/vpDisplayX.h>
72 #include <visp3/gui/vpProjectionDisplay.h>
73 #include <visp3/io/vpParseArgv.h>
74 #include <visp3/robot/vpSimulatorCamera.h>
75 #include <visp3/visual_features/vpFeatureBuilder.h>
76 #include <visp3/visual_features/vpFeaturePointPolar.h>
77 #include <visp3/vs/vpServo.h>
78 #include <visp3/vs/vpServoDisplay.h>
79 
80 // List of allowed command line options
81 #define GETOPTARGS "cdh"
82 
83 void usage(const char *name, const char *badparam);
84 bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display);
85 
94 void usage(const char *name, const char *badparam)
95 {
96  fprintf(stdout, "\n\
97 Tests a control law with the following characteristics:\n\
98 - eye-in-hand control\n\
99 - articular velocity are computed\n\
100 - servo on 4 points,\n\
101 - internal and external camera view displays.\n\
102 \n\
103 SYNOPSIS\n\
104  %s [-c] [-d] [-h]\n",
105  name);
106 
107  fprintf(stdout, "\n\
108 OPTIONS: Default\n\
109  -c\n\
110  Disable the mouse click. Useful to automate the \n\
111  execution of this program without human intervention.\n\
112 \n\
113  -d \n\
114  Turn off the display.\n\
115 \n\
116  -h\n\
117  Print the help.\n");
118 
119  if (badparam)
120  fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
121 }
134 bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display)
135 {
136  const char *optarg_;
137  int c;
138  while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
139 
140  switch (c) {
141  case 'c':
142  click_allowed = false;
143  break;
144  case 'd':
145  display = false;
146  break;
147  case 'h':
148  usage(argv[0], nullptr);
149  return false;
150 
151  default:
152  usage(argv[0], optarg_);
153  return false;
154  }
155  }
156 
157  if ((c == 1) || (c == -1)) {
158  // standalone param or error
159  usage(argv[0], nullptr);
160  std::cerr << "ERROR: " << std::endl;
161  std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
162  return false;
163  }
164 
165  return true;
166 }
167 
168 int main(int argc, const char **argv)
169 {
170  try {
171  // Log file creation in /tmp/$USERNAME/log.dat
172  // This file contains by line:
173  // - the 6 computed camera velocities (m/s, rad/s) to achieve the task
174  // - the 6 mesured camera velocities (m/s, rad/s)
175  // - the 6 mesured joint positions (m, rad)
176  // - the 8 values of s - s*
177  std::string username;
178  // Get the user login name
179  vpIoTools::getUserName(username);
180 
181  // Create a log filename to save velocities...
182  std::string logdirname;
183 #if defined(_WIN32)
184  logdirname = "C:/temp/" + username;
185 #else
186  logdirname = "/tmp/" + username;
187 #endif
188 
189  // Test if the output path exist. If no try to create it
190  if (vpIoTools::checkDirectory(logdirname) == false) {
191  try {
192  // Create the dirname
193  vpIoTools::makeDirectory(logdirname);
194  } catch (...) {
195  std::cerr << std::endl << "ERROR:" << std::endl;
196  std::cerr << " Cannot create " << logdirname << std::endl;
197  return EXIT_FAILURE;
198  }
199  }
200  std::string logfilename;
201  logfilename = logdirname + "/log.dat";
202 
203  // Open the log file name
204  std::ofstream flog(logfilename.c_str());
205 
206  bool opt_click_allowed = true;
207  bool opt_display = true;
208 
209  // Read the command line options
210  if (getOptions(argc, argv, opt_click_allowed, opt_display) == false) {
211  return EXIT_FAILURE;
212  }
213 
214 // We open two displays, one for the internal camera view, the other one for
215 // the external view, using either X11, GTK or GDI.
216 #if defined(VISP_HAVE_X11)
217  vpDisplayX displayInt;
218  vpDisplayX displayExt;
219 #elif defined(VISP_HAVE_GTK)
220  vpDisplayGTK displayInt;
221  vpDisplayGTK displayExt;
222 #elif defined(VISP_HAVE_GDI)
223  vpDisplayGDI displayInt;
224  vpDisplayGDI displayExt;
225 #elif defined(HAVE_OPENCV_HIGHGUI)
226  vpDisplayOpenCV displayInt;
227  vpDisplayOpenCV displayExt;
228 #endif
229 
230  // open a display for the visualization
231 
232  vpImage<unsigned char> Iint(300, 300, 0);
233  vpImage<unsigned char> Iext(300, 300, 0);
234 
235  if (opt_display) {
236  displayInt.init(Iint, 0, 0, "Internal view");
237  displayExt.init(Iext, 330, 000, "External view");
238  }
239  vpProjectionDisplay externalview;
240 
241  double px = 500, py = 500;
242  double u0 = 150, v0 = 160;
243 
244  vpCameraParameters cam(px, py, u0, v0);
245 
246  vpServo task;
247  vpSimulatorCamera robot;
248 
249  std::cout << std::endl;
250  std::cout << "----------------------------------------------" << std::endl;
251  std::cout << " Test program for vpServo " << std::endl;
252  std::cout << " Eye-in-hand task control, articular velocity are computed" << std::endl;
253  std::cout << " Simulation " << std::endl;
254  std::cout << " task : servo 4 points " << std::endl;
255  std::cout << "----------------------------------------------" << std::endl;
256  std::cout << std::endl;
257 
258 // #define TRANS_Z_PURE
259 // #define TRANS_X_PURE
260 // #define ROT_Z_PURE
261 // #define ROT_X_PURE
262 #define COMPLEX
263  //#define PROBLEM
264 
265 #if defined(TRANS_Z_PURE)
266  // sets the initial camera location
267  vpHomogeneousMatrix cMo(0, 0, 3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
268  // sets the desired camera location
269  vpHomogeneousMatrix cMod(0, 0, 2, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
270 #elif defined(TRANS_X_PURE)
271  // sets the initial camera location
272  vpHomogeneousMatrix cMo(0.3, 0.3, 3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
273  // sets the desired camera location
274  vpHomogeneousMatrix cMod(0.5, 0.3, 3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
275 
276 #elif defined(ROT_Z_PURE)
277  // sets the initial camera location
278  vpHomogeneousMatrix cMo(0, 0, 3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
279  // sets the desired camera location
280  vpHomogeneousMatrix cMod(0, 0, 3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(180));
281 
282 #elif defined(ROT_X_PURE)
283  // sets the initial camera location
284  vpHomogeneousMatrix cMo(0, 0, 3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
285  // sets the desired camera location
286  vpHomogeneousMatrix cMod(0, 0, 3, vpMath::rad(45), vpMath::rad(0), vpMath::rad(0));
287 
288 #elif defined(COMPLEX)
289  // sets the initial camera location
290  vpHomogeneousMatrix cMo(0.2, 0.2, 3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
291  // sets the desired camera location
292  vpHomogeneousMatrix cMod(0, 0, 2.5, vpMath::rad(45), vpMath::rad(10), vpMath::rad(30));
293 
294 #elif defined(PROBLEM)
295  // Bad behavior with an interaction matrix computed from the desired
296  // features sets the initial camera location
297  vpHomogeneousMatrix cMo(0.2, 0.2, 3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
298  // sets the desired camera location
299  vpHomogeneousMatrix cMod(0.4, 0.2, 3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
300 
301 #endif
302  // Compute the position of the object in the world frame
303  vpHomogeneousMatrix wMc, wMo;
304  robot.getPosition(wMc);
305  wMo = wMc * cMo;
306 
307  vpHomogeneousMatrix cextMo(0, 0, 6, vpMath::rad(40), vpMath::rad(10), vpMath::rad(60));
308 
309  // sets the point coordinates in the object frame
310  vpPoint point[4];
311  point[0].setWorldCoordinates(-0.25, -0.25, 0);
312  point[1].setWorldCoordinates(0.25, -0.25, 0);
313  point[2].setWorldCoordinates(0.25, 0.25, 0);
314  point[3].setWorldCoordinates(-0.25, 0.25, 0);
315 
316  for (unsigned int i = 0; i < 4; i++)
317  externalview.insert(point[i]);
318 
319  // sets the desired position of the feature point s*"
320  vpFeaturePointPolar pd[4];
321 
322  // computes the point coordinates in the desired camera frame and
323  // its 2D coordinates
324  for (unsigned int i = 0; i < 4; i++) {
325  point[i].track(cMod);
326  // Computes the polar coordinates from the image point
327  // cartesian coordinates
328  vpFeatureBuilder::create(pd[i], point[i]);
329  }
330 
331  // computes the point coordinates in the camera frame and its 2D
332  // coordinates
333  for (unsigned int i = 0; i < 4; i++)
334  point[i].track(cMo);
335 
336  // sets the desired position of the point
337  vpFeaturePointPolar p[4];
338  for (unsigned int i = 0; i < 4; i++) {
339  // retrieve x,y and Z of the vpPoint structure to initialize the
340  // visual feature
341  vpFeatureBuilder::create(p[i], point[i]);
342  }
343 
344  // Define the task;
345  // - we want an eye-in-hand control law
346  // - articular velocity are computed
348  // task.setInteractionMatrixType(vpServo::MEAN) ;
349  // task.setInteractionMatrixType(vpServo::DESIRED) ;
351 
352  // Set the position of the end-effector frame in the camera frame as identity
354  vpVelocityTwistMatrix cVe(cMe);
355  task.set_cVe(cVe);
356 
357  // Set the Jacobian (expressed in the end-effector frame)
358  vpMatrix eJe;
359  robot.get_eJe(eJe);
360  task.set_eJe(eJe);
361 
362  // we want to see a point on a point
363  for (unsigned int i = 0; i < 4; i++)
364  task.addFeature(p[i], pd[i]);
365 
366  // set the gain
367  task.setLambda(1);
368 
369  std::cout << "\nDisplay task information: " << std::endl;
370  task.print();
371 
372  unsigned int iter = 0;
373  // loop
374  while (iter++ < 200) {
375  std::cout << "---------------------------------------------" << iter << std::endl;
376  vpColVector v;
377 
378  // Set the Jacobian (expressed in the end-effector frame)
379  // Since q is modified eJe is modified
380  robot.get_eJe(eJe);
381  task.set_eJe(eJe);
382 
383  // get the robot position
384  robot.getPosition(wMc);
385  // Compute the position of the object frame in the camera frame
386  cMo = wMc.inverse() * wMo;
387 
388  // Compute new point position
389  for (unsigned int i = 0; i < 4; i++) {
390  point[i].track(cMo);
391  // retrieve x,y and Z of the vpPoint structure to compute the feature
392  vpFeatureBuilder::create(p[i], point[i]);
393  }
394 
395  if (opt_display) {
396  vpDisplay::display(Iint);
397  vpDisplay::display(Iext);
398 
399  vpServoDisplay::display(task, cam, Iint);
400  externalview.display(Iext, cextMo, cMo, cam, vpColor::green);
401  vpDisplay::flush(Iint);
402  vpDisplay::flush(Iext);
403  }
404 
405  // Compute the control law
406  v = task.computeControlLaw();
407 
408  if (iter == 1) {
409  std::cout << "Display task information: " << std::endl;
410  task.print();
411  }
412 
415 
416  // Send the camera velocity to the controller
418  // Save velocities applied to the robot in the log file
419  // v[0], v[1], v[2] correspond to camera translation velocities in m/s
420  // v[3], v[4], v[5] correspond to camera rotation velocities in rad/s
421  flog << v[0] << " " << v[1] << " " << v[2] << " " << v[3] << " " << v[4] << " " << v[5] << " ";
422 
423  std::cout << "v: " << v.t() << std::endl;
424 
425  std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
426 
427  // Save feature error (s-s*) for the 4 feature points. For each feature
428  // point, we have 2 errors (along x and y axis). This error is
429  // expressed in meters in the camera frame
430  flog << (task.getError()).t() << " "; // s-s* for point 4
431  std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
432 
433  // Save current visual feature s = (rho,theta)
434  for (unsigned int i = 0; i < 4; i++) {
435  flog << p[i].get_rho() << " " << p[i].get_theta() << " ";
436  }
437  // Save current position of the points
438  for (unsigned int i = 0; i < 4; i++) {
439  flog << point[i].get_x() << " " << point[i].get_y() << " ";
440  }
441  flog << std::endl;
442 
443  if (iter == 1) {
444  vpImagePoint ip;
445  ip.set_i(10);
446  ip.set_j(10);
447 
448  std::cout << "\nClick in the internal camera view to continue..." << std::endl;
449  vpDisplay::displayText(Iint, ip, "A click to continue...", vpColor::red);
450  vpDisplay::flush(Iint);
451  vpDisplay::getClick(Iint);
452  }
453  }
454 
455  flog.close(); // Close the log file
456 
457  // Display task information
458  task.print();
459 
460  // Kill the task
461 
462  std::cout << "Final robot position with respect to the object frame:\n";
463  cMo.print();
464 
465  if (opt_display && opt_click_allowed) {
466  vpDisplay::displayText(Iint, 20, 20, "Click to quit...", vpColor::white);
467  vpDisplay::flush(Iint);
468  vpDisplay::getClick(Iint);
469  }
470  return EXIT_SUCCESS;
471  } catch (const vpException &e) {
472  std::cout << "Catch a ViSP exception: " << e << std::endl;
473  return EXIT_FAILURE;
474  }
475 }
476 #else
477 int main()
478 {
479  std::cout << "You do not have X11, or GTK, or GDI (Graphical Device Interface) functionalities to display images..."
480  << std::endl;
481  std::cout << "Tip if you are on a unix-like system:" << std::endl;
482  std::cout << "- Install X11, configure again ViSP using cmake and build again this example" << std::endl;
483  std::cout << "Tip if you are on a windows-like system:" << std::endl;
484  std::cout << "- Install GDI, configure again ViSP using cmake and build again this example" << std::endl;
485  return EXIT_SUCCESS;
486 }
487 #endif
Generic class defining intrinsic camera parameters.
Implementation of column vector and the associated operations.
Definition: vpColVector.h:163
vpRowVector t() const
static const vpColor white
Definition: vpColor.h:206
static const vpColor red
Definition: vpColor.h:211
static const vpColor green
Definition: vpColor.h:214
Display for windows using GDI (available on any windows 32 platform).
Definition: vpDisplayGDI.h:128
The vpDisplayGTK allows to display image using the GTK 3rd party library. Thus to enable this class G...
Definition: vpDisplayGTK.h:128
The vpDisplayOpenCV allows to display image using the OpenCV library. Thus to enable this class OpenC...
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
Definition: vpDisplayX.h:128
void init(vpImage< unsigned char > &I, int win_x=-1, int win_y=-1, const std::string &win_title="") vp_override
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
static void display(const vpImage< unsigned char > &I)
static void flush(const vpImage< unsigned char > &I)
static void displayText(const vpImage< unsigned char > &I, const vpImagePoint &ip, const std::string &s, const vpColor &color)
error that can be emitted by ViSP classes.
Definition: vpException.h:59
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
Class that defines 2D image point visual feature with polar coordinates described in .
void track(const vpHomogeneousMatrix &cMo)
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:82
void set_j(double jj)
Definition: vpImagePoint.h:304
void set_i(double ii)
Definition: vpImagePoint.h:293
static bool checkDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:832
static std::string getUserName()
Definition: vpIoTools.cpp:725
static void makeDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:981
static double rad(double deg)
Definition: vpMath.h:127
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:146
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:69
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:77
double get_y() const
Get the point y coordinate in the image plane.
Definition: vpPoint.cpp:465
double get_x() const
Get the point x coordinate in the image plane.
Definition: vpPoint.cpp:463
void setWorldCoordinates(double oX, double oY, double oZ)
Definition: vpPoint.cpp:110
interface with the image for feature display
void display(vpImage< unsigned char > &I, const vpHomogeneousMatrix &cextMo, const vpHomogeneousMatrix &cMo, const vpCameraParameters &cam, const vpColor &color, const bool &displayTraj=false, unsigned int thickness=1)
void insert(vpForwardProjection &fp)
void get_eJe(vpMatrix &eJe) vp_override
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) vp_override
@ CAMERA_FRAME
Definition: vpRobot.h:82
static void display(const vpServo &s, const vpCameraParameters &cam, const vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:378
@ EYEINHAND_L_cVe_eJe
Definition: vpServo.h:162
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:329
void set_cVe(const vpVelocityTwistMatrix &cVe_)
Definition: vpServo.h:1028
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:169
void setLambda(double c)
Definition: vpServo.h:976
void set_eJe(const vpMatrix &eJe_)
Definition: vpServo.h:1091
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:132
vpColVector getError() const
Definition: vpServo.h:504
vpColVector computeControlLaw()
Definition: vpServo.cpp:703
@ FEATURE_CURRENT
Print the current features .
Definition: vpServo.h:240
@ FEATURE_DESIRED
Print the desired features .
Definition: vpServo.h:241
@ CURRENT
Definition: vpServo.h:196
Class that defines the simplest robot: a free flying camera.
void display(vpImage< unsigned char > &I, const std::string &title)
Display a gray-scale image.