Visual Servoing Platform  version 3.6.1 under development (2024-04-20)
mbot-apriltag-2D-half-vs.cpp
1 #include <visp3/core/vpPolygon.h>
3 #include <visp3/core/vpSerial.h>
4 #include <visp3/core/vpXmlParserCamera.h>
5 #include <visp3/detection/vpDetectorAprilTag.h>
6 #include <visp3/gui/vpDisplayX.h>
7 #include <visp3/io/vpImageIo.h>
8 #include <visp3/robot/vpUnicycle.h>
9 #include <visp3/sensor/vpV4l2Grabber.h>
10 #include <visp3/visual_features/vpFeatureBuilder.h>
11 #include <visp3/visual_features/vpFeatureDepth.h>
12 #include <visp3/visual_features/vpFeaturePoint.h>
13 #include <visp3/vs/vpServo.h>
14 
15 int main(int argc, const char **argv)
16 {
17 #if defined(VISP_HAVE_APRILTAG) && defined(VISP_HAVE_V4L2)
18  int device = 0;
21  double tagSize = 0.065;
22  float quad_decimate = 4.0;
23  int nThreads = 2;
24  std::string intrinsic_file = "";
25  std::string camera_name = "";
26  bool display_tag = false;
27  bool display_on = false;
28  bool serial_off = false;
29  bool use_pose = true;
30  bool save_image = false; // Only possible if display_on = true
31 
32  for (int i = 1; i < argc; i++) {
33  if (std::string(argv[i]) == "--without_pose_computation") {
34  use_pose = false;
35  } else if (std::string(argv[i]) == "--tag_size" && i + 1 < argc) {
36  tagSize = std::atof(argv[i + 1]);
37  } else if (std::string(argv[i]) == "--input" && i + 1 < argc) {
38  device = std::atoi(argv[i + 1]);
39  } else if (std::string(argv[i]) == "--quad_decimate" && i + 1 < argc) {
40  quad_decimate = (float)atof(argv[i + 1]);
41  } else if (std::string(argv[i]) == "--nthreads" && i + 1 < argc) {
42  nThreads = std::atoi(argv[i + 1]);
43  } else if (std::string(argv[i]) == "--intrinsic" && i + 1 < argc) {
44  intrinsic_file = std::string(argv[i + 1]);
45  } else if (std::string(argv[i]) == "--camera_name" && i + 1 < argc) {
46  camera_name = std::string(argv[i + 1]);
47  } else if (std::string(argv[i]) == "--display_tag") {
48  display_tag = true;
49 #if defined(VISP_HAVE_X11)
50  } else if (std::string(argv[i]) == "--display_on") {
51  display_on = true;
52  } else if (std::string(argv[i]) == "--save_image") {
53  save_image = true;
54 #endif
55  } else if (std::string(argv[i]) == "--serial_off") {
56  serial_off = true;
57  } else if (std::string(argv[i]) == "--tag_family" && i + 1 < argc) {
58  tagFamily = (vpDetectorAprilTag::vpAprilTagFamily)atoi(argv[i + 1]);
59  } else if (std::string(argv[i]) == "--help" || std::string(argv[i]) == "-h") {
60  std::cout << "Usage: " << argv[0]
61  << " [--input <camera input>] [--tag_size <tag_size in m>]"
62  " [--quad_decimate <quad_decimate>] [--nthreads <nb>]"
63  " [--intrinsic <intrinsic file>] [--camera_name <camera name>] [--without_pose_computation]"
64  " [--tag_family <family> (0: TAG_36h11, 1: TAG_36h10, 2: TAG_36ARTOOLKIT,"
65  " 3: TAG_25h9, 4: TAG_25h7, 5: TAG_16h5)]"
66  " [--display_tag]";
67 #if defined(VISP_HAVE_X11)
68  std::cout << " [--display_on] [--save_image]";
69 #endif
70  std::cout << " [--serial_off] [--help]" << std::endl;
71  return EXIT_SUCCESS;
72  }
73  }
74 
75  // Me Auriga led ring
76  // if serial com ok: led 1 green
77  // if exception: led 1 red
78  // if tag detected: led 2 green, else led 2 red
79  // if motor left: led 3 blue
80  // if motor right: led 4 blue
81 
82  vpSerial *serial = nullptr;
83  if (!serial_off) {
84  serial = new vpSerial("/dev/ttyAMA0", 115200);
85 
86  serial->write("LED_RING=0,0,0,0\n"); // Switch off all led
87  serial->write("LED_RING=1,0,10,0\n"); // Switch on led 1 to green: serial ok
88  }
89 
90  try {
92 
93  vpV4l2Grabber g;
94  std::ostringstream device_name;
95  device_name << "/dev/video" << device;
96  g.setDevice(device_name.str());
97  g.setScale(1);
98  g.acquire(I);
99 
100  vpDisplay *d = nullptr;
101  vpImage<vpRGBa> O;
102 #ifdef VISP_HAVE_X11
103  if (display_on) {
104  d = new vpDisplayX(I);
105  }
106 #endif
107 
108  vpCameraParameters cam;
109  cam.initPersProjWithoutDistortion(615.1674805, 615.1675415, I.getWidth() / 2., I.getHeight() / 2.);
110  vpXmlParserCamera parser;
111  if (!intrinsic_file.empty() && !camera_name.empty())
112  parser.parse(cam, intrinsic_file, camera_name, vpCameraParameters::perspectiveProjWithoutDistortion);
113 
114  std::cout << "cam:\n" << cam << std::endl;
115  std::cout << "use pose: " << use_pose << std::endl;
116  std::cout << "tagFamily: " << tagFamily << std::endl;
117 
118  vpDetectorAprilTag detector(tagFamily);
119 
120  detector.setAprilTagQuadDecimate(quad_decimate);
121  if (use_pose)
122  detector.setAprilTagPoseEstimationMethod(poseEstimationMethod);
123  detector.setAprilTagNbThreads(nThreads);
124  detector.setDisplayTag(display_tag);
125 
126  vpServo task;
127  vpAdaptiveGain lambda;
128  if (display_on)
129  lambda.initStandard(2.5, 0.4, 30); // lambda(0)=2.5, lambda(oo)=0.4 and lambda'(0)=30
130  else
131  lambda.initStandard(4, 0.4, 30); // lambda(0)=4, lambda(oo)=0.4 and lambda'(0)=30
132 
133  vpUnicycle robot;
136  task.setLambda(lambda);
137  vpRotationMatrix cRe;
138  cRe[0][0] = 0;
139  cRe[0][1] = -1;
140  cRe[0][2] = 0;
141  cRe[1][0] = 0;
142  cRe[1][1] = 0;
143  cRe[1][2] = -1;
144  cRe[2][0] = 1;
145  cRe[2][1] = 0;
146  cRe[2][2] = 0;
147 
149  vpVelocityTwistMatrix cVe(cMe);
150  task.set_cVe(cVe);
151 
152  vpMatrix eJe(6, 2, 0);
153  eJe[0][0] = eJe[5][1] = 1.0;
154 
155  std::cout << "eJe: \n" << eJe << std::endl;
156 
157  // Current and desired visual feature associated to the x coordinate of the point
158  vpFeaturePoint s_x, s_xd;
159  vpImagePoint cog;
160  double Z, Z_d;
161  Z = Z_d = 0.4;
162 
163  // Create the current x visual feature
164  vpFeatureBuilder::create(s_x, cam, cog);
165 
166  // Create the desired x* visual feature
167  s_xd.buildFrom(0, 0, Z_d);
168 
169  // Add the point feature
170  task.addFeature(s_x, s_xd, vpFeaturePoint::selectX());
171 
172  // Create the log(Z/Z*) visual feature
173  vpFeatureDepth s_Z, s_Z_d;
174 
175  std::cout << "Z " << Z << std::endl;
176  s_Z.buildFrom(s_x.get_x(), s_x.get_y(), Z, 0); // log(Z/Z*) = 0 that's why the last parameter is 0
177  s_Z_d.buildFrom(0, 0, Z_d, 0); // The value of s* is 0 with Z=1 meter
178 
179  // Add the feature
180  task.addFeature(s_Z, s_Z_d);
181 
182  std::vector<double> time_vec;
183  for (;;) {
184  g.acquire(I);
185 
187 
188  double t = vpTime::measureTimeMs();
189  std::vector<vpHomogeneousMatrix> cMo_vec;
190  if (use_pose)
191  detector.detect(I, tagSize, cam, cMo_vec);
192  else
193  detector.detect(I);
194 
195  t = vpTime::measureTimeMs() - t;
196  time_vec.push_back(t);
197 
198  {
199  std::stringstream ss;
200  ss << "Detection time: " << t << " ms";
201  vpDisplay::displayText(I, 40, 20, ss.str(), vpColor::red);
202  }
203 
204  if (detector.getNbObjects() == 1) {
205  // Display visual features
206  vpHomogeneousMatrix cdMo(0, 0, Z_d, 0, 0, 0);
207  vpDisplay::displayFrame(I, cdMo, cam, tagSize / 3, vpColor::red, 3);
208  vpDisplay::displayCross(I, detector.getCog(0), 15, vpColor::green,
209  3); // Current polygon used to compure an moment
210  vpDisplay::displayLine(I, 0, cam.get_u0(), I.getHeight() - 1, cam.get_u0(), vpColor::red,
211  3); // Vertical line as desired x position
212  if (use_pose) {
213  // Display visual features
214  vpDisplay::displayFrame(I, cMo_vec[0], cam, tagSize / 2, vpColor::none, 3);
215  }
216 
217  if (!serial_off) {
218  serial->write("LED_RING=2,0,10,0\n"); // Switch on led 2 to green: tag detected
219  }
220 
221  if (use_pose) {
222  Z = cMo_vec[0][2][3];
223  } else {
224  vpPolygon polygon(detector.getPolygon(0));
225  double surface = polygon.getArea();
226  std::cout << "Surface: " << surface << std::endl;
227 
228  // Compute the distance from target surface and 3D size
229  Z = tagSize * cam.get_px() / sqrt(surface);
230  }
231 
232  vpFeatureBuilder::create(s_x, cam, detector.getCog(0));
233  s_x.set_Z(Z);
234 
235  // Update log(Z/Z*) feature
236  s_Z.buildFrom(s_x.get_x(), s_x.get_y(), Z, log(Z / Z_d));
237 
238  std::cout << "cog: " << detector.getCog(0) << " Z: " << Z << std::endl;
239 
240  task.set_cVe(cVe);
241  task.set_eJe(eJe);
242 
243  // Compute the control law. Velocities are computed in the mobile robot reference frame
244  vpColVector v = task.computeControlLaw();
245 
246  std::cout << "Send velocity to the mbot: " << v[0] << " m/s " << vpMath::deg(v[1]) << " deg/s" << std::endl;
247 
248  task.print();
249  double radius = 0.0325;
250  double L = 0.0725;
251  double motor_left = (-v[0] - L * v[1]) / radius;
252  double motor_right = (v[0] - L * v[1]) / radius;
253  std::cout << "motor left vel: " << motor_left << " motor right vel: " << motor_right << std::endl;
254  if (!serial_off) {
255  // serial->write("LED_RING=3,0,0,10\n"); // Switch on led 3 to blue: motor left servoed
256  // serial->write("LED_RING=4,0,0,10\n"); // Switch on led 4 to blue: motor right servoed
257  }
258  std::stringstream ss;
259  double rpm_left = motor_left * 30. / M_PI;
260  double rpm_right = motor_right * 30. / M_PI;
261  ss << "MOTOR_RPM=" << vpMath::round(rpm_left) << "," << vpMath::round(rpm_right) << "\n";
262  std::cout << "Send: " << ss.str() << std::endl;
263  if (!serial_off) {
264  serial->write(ss.str());
265  }
266  } else {
267  // stop the robot
268  if (!serial_off) {
269  serial->write("LED_RING=2,10,0,0\n"); // Switch on led 2 to red: tag not detected
270  // serial->write("LED_RING=3,0,0,0\n"); // Switch on led 3 to blue: motor left not servoed
271  // serial->write("LED_RING=4,0,0,0\n"); // Switch on led 4 to blue: motor right not servoed
272  serial->write("MOTOR_RPM=0,-0\n"); // Stop the robot
273  }
274  }
275 
276  vpDisplay::displayText(I, 20, 20, "Click to quit.", vpColor::red);
277  vpDisplay::flush(I);
278  if (display_on && save_image) {
279  vpDisplay::getImage(I, O);
280  vpImageIo::write(O, "image.png");
281  }
282  if (vpDisplay::getClick(I, false))
283  break;
284  }
285 
286  if (!serial_off) {
287  serial->write("LED_RING=0,0,0,0\n"); // Switch off all led
288  }
289 
290  std::cout << "Benchmark computation time" << std::endl;
291  std::cout << "Mean / Median / Std: " << vpMath::getMean(time_vec) << " ms"
292  << " ; " << vpMath::getMedian(time_vec) << " ms"
293  << " ; " << vpMath::getStdev(time_vec) << " ms" << std::endl;
294 
295  if (display_on)
296  delete d;
297  if (!serial_off) {
298  delete serial;
299  }
300  } catch (const vpException &e) {
301  std::cerr << "Catch an exception: " << e.getMessage() << std::endl;
302  if (!serial_off) {
303  serial->write("LED_RING=1,10,0,0\n"); // Switch on led 1 to red
304  }
305  }
306 
307  return EXIT_SUCCESS;
308 #else
309  (void)argc;
310  (void)argv;
311 #ifndef VISP_HAVE_APRILTAG
312  std::cout << "ViSP is not build with Apriltag support" << std::endl;
313 #endif
314 #ifndef VISP_HAVE_V4L2
315  std::cout << "ViSP is not build with v4l2 support" << std::endl;
316 #endif
317  std::cout << "Install missing 3rd parties, configure and build ViSP to run this tutorial" << std::endl;
318  return EXIT_SUCCESS;
319 #endif
320 }
Adaptive gain computation.
void initStandard(double gain_at_zero, double gain_at_infinity, double slope_at_zero)
Generic class defining intrinsic camera parameters.
void initPersProjWithoutDistortion(double px, double py, double u0, double v0)
@ perspectiveProjWithoutDistortion
Perspective projection without distortion model.
Implementation of column vector and the associated operations.
Definition: vpColVector.h:163
static const vpColor red
Definition: vpColor.h:211
static const vpColor none
Definition: vpColor.h:223
static const vpColor green
Definition: vpColor.h:214
@ TAG_36h11
AprilTag 36h11 pattern (recommended)
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
Definition: vpDisplayX.h:128
Class that defines generic functionalities for display.
Definition: vpDisplay.h:173
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
static void display(const vpImage< unsigned char > &I)
static void displayLine(const vpImage< unsigned char > &I, const vpImagePoint &ip1, const vpImagePoint &ip2, const vpColor &color, unsigned int thickness=1, bool segment=true)
static void displayFrame(const vpImage< unsigned char > &I, const vpHomogeneousMatrix &cMo, const vpCameraParameters &cam, double size, const vpColor &color=vpColor::none, unsigned int thickness=1, const vpImagePoint &offset=vpImagePoint(0, 0), const std::string &frameName="", const vpColor &textColor=vpColor::black, const vpImagePoint &textOffset=vpImagePoint(15, 15))
static void getImage(const vpImage< unsigned char > &Is, vpImage< vpRGBa > &Id)
Definition: vpDisplay.cpp:138
static void displayCross(const vpImage< unsigned char > &I, const vpImagePoint &ip, unsigned int size, const vpColor &color, unsigned int thickness=1)
static void flush(const vpImage< unsigned char > &I)
static void displayText(const vpImage< unsigned char > &I, const vpImagePoint &ip, const std::string &s, const vpColor &color)
error that can be emitted by ViSP classes.
Definition: vpException.h:59
const char * getMessage() const
Definition: vpException.cpp:64
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
Class that defines a 3D point visual feature which is composed by one parameters that is that defin...
void buildFrom(double x, double y, double Z, double LogZoverZstar)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
void buildFrom(double x, double y, double Z)
static unsigned int selectX()
double get_y() const
double get_x() const
void set_Z(double Z)
Implementation of an homogeneous matrix and operations on such kind of matrices.
static void write(const vpImage< unsigned char > &I, const std::string &filename, int backend=IO_DEFAULT_BACKEND)
Definition: vpImageIo.cpp:287
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:82
unsigned int getWidth() const
Definition: vpImage.h:245
unsigned int getHeight() const
Definition: vpImage.h:184
static double getMedian(const std::vector< double > &v)
Definition: vpMath.cpp:323
static double getStdev(const std::vector< double > &v, bool useBesselCorrection=false)
Definition: vpMath.cpp:354
static int round(double x)
Definition: vpMath.h:403
static double getMean(const std::vector< double > &v)
Definition: vpMath.cpp:303
static double deg(double rad)
Definition: vpMath.h:117
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:146
Defines a generic 2D polygon.
Definition: vpPolygon.h:97
Implementation of a rotation matrix and operations on such kind of matrices.
void write(const std::string &s)
Definition: vpSerial.cpp:313
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:378
@ EYEINHAND_L_cVe_eJe
Definition: vpServo.h:162
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:329
void set_cVe(const vpVelocityTwistMatrix &cVe_)
Definition: vpServo.h:1028
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:169
void setLambda(double c)
Definition: vpServo.h:976
void set_eJe(const vpMatrix &eJe_)
Definition: vpServo.h:1091
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:132
@ PSEUDO_INVERSE
Definition: vpServo.h:229
vpColVector computeControlLaw()
Definition: vpServo.cpp:703
@ CURRENT
Definition: vpServo.h:196
Class that consider the case of a translation vector.
Generic functions for unicycle mobile robots.
Definition: vpUnicycle.h:50
Class that is a wrapper over the Video4Linux2 (V4L2) driver.
void setScale(unsigned scale=vpV4l2Grabber::DEFAULT_SCALE)
void setDevice(const std::string &devname)
void acquire(vpImage< unsigned char > &I)
XML parser to load and save intrinsic camera parameters.
int parse(vpCameraParameters &cam, const std::string &filename, const std::string &camera_name, const vpCameraParameters::vpCameraParametersProjType &projModel, unsigned int image_width=0, unsigned int image_height=0, bool verbose=true)
VISP_EXPORT double measureTimeMs()