Visual Servoing Platform  version 3.6.1 under development (2024-09-11)
tutorial-simu-pioneer-pan.cpp

Example that shows how to simulate a visual servoing on a Pioneer mobile robot equipped with a camera able to move along the pan axis. The current visual features that are used are s = (x, log(Z/Z*)). The desired one are s* = (x*, 0), with:

The degrees of freedom that are controlled are (vx, wz), where wz is the rotational velocity and vx the translational velocity of the mobile platform at point M located at the middle between the two wheels.

The feature x allows to control wy, while log(Z/Z*) allows to control vz.

#include <iostream>
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpVelocityTwistMatrix.h>
#include <visp3/gui/vpPlot.h>
#include <visp3/robot/vpSimulatorPioneerPan.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeatureDepth.h>
#include <visp3/visual_features/vpFeaturePoint.h>
#include <visp3/vs/vpServo.h>
int main()
{
#if defined(ENABLE_VISP_NAMESPACE)
using namespace VISP_NAMESPACE_NAME;
#endif
try {
// Set the position the camera has to reach
cdMo[1][3] = 1.2; // t_y should be different from zero to be non singular
cdMo[2][3] = 0.5;
// Set the initial camera position
cMo[0][3] = 0.3;
cMo[1][3] = cdMo[1][3];
cMo[2][3] = 1.;
vpRotationMatrix cdRo(0, atan2(cMo[0][3], cMo[1][3]), 0);
cMo.insert(cdRo);
robot.setSamplingTime(0.04);
// Get robot position world frame
robot.getPosition(wMc);
// Compute the position of the object in the world frame
wMo = wMc * cMo;
// Define the target
vpPoint point(0, 0, 0); // Coordinates in the object frame
point.track(cMo);
vpServo task;
task.setLambda(0.2);
cVe = robot.get_cVe();
task.set_cVe(cVe);
vpMatrix eJe;
robot.get_eJe(eJe);
task.set_eJe(eJe);
// Current and desired visual feature associated later to the x coordinate
// of the point
vpFeaturePoint s_x, s_xd;
// Create the current x visual feature
// Create the desired x* visual feature
s_xd.build(0, 0, cdMo[2][3]);
// Add the feature
task.addFeature(s_x, s_xd, vpFeaturePoint::selectX());
// Create the current and desired log(Z/Z*) visual feature
vpFeatureDepth s_Z, s_Zd;
// Initial depth of the target in front of the camera
double Z = point.get_Z();
// Desired depth Z* of the target.
double Zd = cdMo[2][3];
s_Z.build(s_x.get_x(), s_x.get_y(), Z, log(Z / Zd));
s_Zd.build(0, 0, Zd,
0); // log(Z/Z*) = 0 that's why the last parameter is 0
// Add the feature
task.addFeature(s_Z, s_Zd);
#ifdef VISP_HAVE_DISPLAY
// Create a window (800 by 500) at position (400, 10) with 3 graphics
vpPlot graph(3, 800, 500, 400, 10, "Curves...");
// Init the curve plotter
graph.initGraph(0, 3);
graph.initGraph(1, 2);
graph.initGraph(2, 1);
graph.setTitle(0, "Velocities");
graph.setTitle(1, "Error s-s*");
graph.setTitle(2, "Depth");
graph.setLegend(0, 0, "vx");
graph.setLegend(0, 1, "wz");
graph.setLegend(0, 2, "qdot_pan");
graph.setLegend(1, 0, "x");
graph.setLegend(1, 1, "log(Z/Z*)");
graph.setLegend(2, 0, "Z");
#endif
int iter = 0;
for (;;) {
robot.getPosition(wMc);
cMo = wMc.inverse() * wMo;
point.track(cMo);
// Update the current x feature
// Update log(Z/Z*) feature. Since the depth Z change, we need to update
// the intection matrix
Z = point.get_Z();
s_Z.build(s_x.get_x(), s_x.get_y(), Z, log(Z / Zd));
robot.get_cVe(cVe);
task.set_cVe(cVe);
robot.get_eJe(eJe);
task.set_eJe(eJe);
// Compute the control law. Velocities are computed in the mobile robot
// reference frame
// Send the velocity to the robot
#ifdef VISP_HAVE_DISPLAY
graph.plot(0, iter, v); // plot velocities applied to the robot
graph.plot(1, iter, task.getError()); // plot error vector
graph.plot(2, 0, iter, Z); // plot the depth
#endif
iter++;
if (task.getError().sumSquare() < 0.0001) {
std::cout << "Reached a small error. We stop the loop... " << std::endl;
break;
}
}
#ifdef VISP_HAVE_DISPLAY
const char *legend = "Click to quit...";
vpDisplay::displayText(graph.I, (int)graph.I.getHeight() - 60, (int)graph.I.getWidth() - 150, legend, vpColor::red);
#endif
// Kill the servo task
task.print();
}
catch (const vpException &e) {
std::cout << "Catch an exception: " << e << std::endl;
}
}
Implementation of column vector and the associated operations.
Definition: vpColVector.h:191
double sumSquare() const
static const vpColor red
Definition: vpColor.h:217
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
static void flush(const vpImage< unsigned char > &I)
static void displayText(const vpImage< unsigned char > &I, const vpImagePoint &ip, const std::string &s, const vpColor &color)
error that can be emitted by ViSP classes.
Definition: vpException.h:60
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
Class that defines a 3D point visual feature which is composed by one parameters that is that defin...
vpFeatureDepth & build(const double &x, const double &y, const double &Z, const double &LogZoverZstar)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
static unsigned int selectX()
double get_y() const
double get_x() const
vpFeaturePoint & build(const double &x, const double &y, const double &Z)
void track(const vpHomogeneousMatrix &cMo)
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
void insert(const vpRotationMatrix &R)
unsigned int getWidth() const
Definition: vpImage.h:242
unsigned int getHeight() const
Definition: vpImage.h:181
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:169
This class enables real time drawing of 2D or 3D graphics. An instance of the class open a window whi...
Definition: vpPlot.h:112
void initGraph(unsigned int graphNum, unsigned int curveNbr)
Definition: vpPlot.cpp:203
vpImage< unsigned char > I
Definition: vpPlot.h:114
void setLegend(unsigned int graphNum, unsigned int curveNum, const std::string &legend)
Definition: vpPlot.cpp:552
void plot(unsigned int graphNum, unsigned int curveNum, double x, double y)
Definition: vpPlot.cpp:270
void setTitle(unsigned int graphNum, const std::string &title)
Definition: vpPlot.cpp:510
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:79
double get_Z() const
Get the point cZ coordinate in the camera frame.
Definition: vpPoint.cpp:406
void get_eJe(vpMatrix &eJe) VP_OVERRIDE
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) VP_OVERRIDE
@ ARTICULAR_FRAME
Definition: vpRobot.h:80
Implementation of a rotation matrix and operations on such kind of matrices.
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:380
@ EYEINHAND_L_cVe_eJe
Definition: vpServo.h:168
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:331
void set_cVe(const vpVelocityTwistMatrix &cVe_)
Definition: vpServo.h:1038
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:171
void setLambda(double c)
Definition: vpServo.h:986
void set_eJe(const vpMatrix &eJe_)
Definition: vpServo.h:1101
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:134
vpColVector getError() const
Definition: vpServo.h:510
@ PSEUDO_INVERSE
Definition: vpServo.h:235
vpColVector computeControlLaw()
Definition: vpServo.cpp:705
@ CURRENT
Definition: vpServo.h:202
Class that defines the Pioneer mobile robot simulator equipped with a camera able to move in pan.
vpVelocityTwistMatrix get_cVe() const
Definition: vpUnicycle.h:72