Visual Servoing Platform  version 3.6.1 under development (2024-05-09)
servoViper850Point2DArtVelocity-jointAvoidance-gpa.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See https://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * tests the control law
33  * eye-in-hand control
34  * velocity computed in articular
35  *
36 *****************************************************************************/
37 
46 #include <visp3/core/vpConfig.h>
47 #include <visp3/core/vpDebug.h> // Debug trace
48 
49 #include <fstream>
50 #include <iostream>
51 #include <sstream>
52 #include <stdio.h>
53 #include <stdlib.h>
54 
55 #if (defined(VISP_HAVE_VIPER850) && defined(VISP_HAVE_DC1394) && defined(VISP_HAVE_DISPLAY))
56 
57 #include <visp3/blob/vpDot2.h>
58 #include <visp3/core/vpDisplay.h>
59 #include <visp3/core/vpException.h>
60 #include <visp3/core/vpHomogeneousMatrix.h>
61 #include <visp3/core/vpImage.h>
62 #include <visp3/core/vpIoTools.h>
63 #include <visp3/core/vpMath.h>
64 #include <visp3/core/vpPoint.h>
65 #include <visp3/gui/vpDisplayGTK.h>
66 #include <visp3/gui/vpDisplayOpenCV.h>
67 #include <visp3/gui/vpDisplayX.h>
68 #include <visp3/gui/vpPlot.h>
69 #include <visp3/robot/vpRobotViper850.h>
70 #include <visp3/sensor/vp1394TwoGrabber.h>
71 #include <visp3/visual_features/vpFeatureBuilder.h>
72 #include <visp3/visual_features/vpFeaturePoint.h>
73 #include <visp3/vs/vpServo.h>
74 #include <visp3/vs/vpServoDisplay.h>
75 
76 int main()
77 {
78  try {
79  vpRobotViper850 robot;
80 
81  vpServo task;
82 
84 
85  bool reset = false;
86  vp1394TwoGrabber g(reset);
88  g.setFramerate(vp1394TwoGrabber::vpFRAMERATE_60);
89  g.open(I);
90 
91  g.acquire(I);
92 
93 #ifdef VISP_HAVE_X11
94  vpDisplayX display(I, 800, 100, "Current image");
95 #elif defined(HAVE_OPENCV_HIGHGUI)
96  vpDisplayOpenCV display(I, 800, 100, "Current image");
97 #elif defined(VISP_HAVE_GTK)
98  vpDisplayGTK display(I, 800, 100, "Current image");
99 #endif
100 
102  vpDisplay::flush(I);
103 
104  vpColVector jointMin(6), jointMax(6);
105  jointMin = robot.getJointMin();
106  jointMax = robot.getJointMax();
107 
108  vpColVector Qmin(6), tQmin(6);
109  vpColVector Qmax(6), tQmax(6);
110  vpColVector Qmiddle(6);
111  vpColVector data(10);
112 
113  double rho = 0.15;
114  for (unsigned int i = 0; i < 6; i++) {
115  Qmin[i] = jointMin[i] + 0.5 * rho * (jointMax[i] - jointMin[i]);
116  Qmax[i] = jointMax[i] - 0.5 * rho * (jointMax[i] - jointMin[i]);
117  }
118  Qmiddle = (Qmin + Qmax) / 2.;
119  double rho1 = 0.1;
120 
121  for (unsigned int i = 0; i < 6; i++) {
122  tQmin[i] = Qmin[i] + 0.5 * (rho1) * (Qmax[i] - Qmin[i]);
123  tQmax[i] = Qmax[i] - 0.5 * (rho1) * (Qmax[i] - Qmin[i]);
124  }
125 
126  vpColVector q(6);
127 
128  // Create a window with two graphics
129  // - first graphic to plot q(t), Qmin, Qmax, tQmin and tQmax
130  // - second graphic to plot the cost function h_s
131  vpPlot plot(2);
132 
133  // The first graphic contains 10 data to plot: q(t), Qmin, Qmax, tQmin and
134  // tQmax
135  plot.initGraph(0, 10);
136  // The second graphic contains 1 curve, the cost function h_s
137  plot.initGraph(1, 1);
138 
139  // For the first graphic :
140  // - along the x axis the expected values are between 0 and 200
141  // - along the y axis the expected values are between -1.2 and 1.2
142  plot.initRange(0, 0., 200., -1.2, 1.2);
143  plot.setTitle(0, "Joint behavior");
144 
145  // For the second graphic :
146  // - along the x axis the expected values are between 0 and 200 and
147  // the step is 1
148  // - along the y axis the expected values are between 0 and 0.0001 and the
149  // step is 0.00001
150  plot.initRange(1, 0., 200., 0., 1e-4);
151  plot.setTitle(1, "Cost function");
152 
153  // For the first graphic, set the curves legend
154  std::string legend;
155  for (unsigned int i = 0; i < 6; i++) {
156  legend = "q" + i + 1;
157  plot.setLegend(0, i, legend);
158  }
159  plot.setLegend(0, 6, "tQmin");
160  plot.setLegend(0, 7, "tQmax");
161  plot.setLegend(0, 8, "Qmin");
162  plot.setLegend(0, 9, "Qmax");
163 
164  // Set the curves color
165  plot.setColor(0, 0, vpColor::red);
166  plot.setColor(0, 1, vpColor::green);
167  plot.setColor(0, 2, vpColor::blue);
168  plot.setColor(0, 3, vpColor::orange);
169  plot.setColor(0, 4, vpColor(0, 128, 0));
170  plot.setColor(0, 5, vpColor::cyan);
171  for (unsigned int i = 6; i < 10; i++)
172  plot.setColor(0, i, vpColor::black); // for Q and tQ [min,max]
173 
174  // For the second graphic, set the curves legend
175  plot.setLegend(1, 0, "h_s");
176 
177  double beta = 1;
178 
179  // Set the amplitude of the control law due to the secondary task
180  std::cout << " Give the parameters beta (1) : ";
181  std::cin >> beta;
182 
183  vpDot2 dot;
184 
185  std::cout << "Click on a dot..." << std::endl;
186  dot.initTracking(I);
187  vpImagePoint cog = dot.getCog();
189  vpDisplay::flush(I);
190 
191  vpCameraParameters cam;
192  // Update camera parameters
193  robot.getCameraParameters(cam, I);
194 
195  // sets the current position of the visual feature
196  vpFeaturePoint p;
197  vpFeatureBuilder::create(p, cam, dot); // retrieve x,y and Z of the vpPoint structure
198 
199  p.set_Z(1);
200  // sets the desired position of the visual feature
201  vpFeaturePoint pd;
202  pd.buildFrom(0, 0, 1);
203 
204  // Define the task
205  // - we want an eye-in-hand control law
206  // - articular velocity are computed
209 
211  robot.get_cVe(cVe);
212  std::cout << cVe << std::endl;
213  task.set_cVe(cVe);
214 
215  // - Set the Jacobian (expressed in the end-effector frame)") ;
216  vpMatrix eJe;
217  robot.get_eJe(eJe);
218  task.set_eJe(eJe);
219 
220  // - we want to see a point on a point..") ;
221  std::cout << std::endl;
222  task.addFeature(p, pd);
223 
224  // - set the gain
225  task.setLambda(0.8);
226 
227  // Display task information " ) ;
228  task.print();
229 
231 
232  int iter = 0;
233  std::cout << "\nHit CTRL-C to stop the loop...\n" << std::flush;
234  for (;;) {
235  iter++;
236  // Acquire a new image from the camera
237  g.acquire(I);
238 
239  // Display this image
241 
242  // Achieve the tracking of the dot in the image
243  dot.track(I);
244  cog = dot.getCog();
245 
246  // Display a green cross at the center of gravity position in the image
248 
249  // Get the measured joint positions of the robot
250  robot.getPosition(vpRobot::ARTICULAR_FRAME, q);
251 
252  // Update the point feature from the dot location
253  vpFeatureBuilder::create(p, cam, dot);
254 
255  // Get the jacobian of the robot
256  robot.get_eJe(eJe);
257  // Update this jacobian in the task structure. It will be used to
258  // compute the velocity skew (as an articular velocity) qdot = -lambda *
259  // L^+ * cVe * eJe * (s-s*)
260  task.set_eJe(eJe);
261 
262  vpColVector prim_task;
263  vpColVector e2(6);
264  // Compute the visual servoing skew vector
265  prim_task = task.computeControlLaw();
266 
267  vpColVector sec_task(6);
268  double h_s = 0;
269  {
270  // joint limit avoidance with secondary task
271 
272  vpColVector de2dt(6);
273  de2dt = 0;
274  e2 = 0;
275  for (unsigned int i = 0; i < 6; i++) {
276  double S = 0;
277  if (q[i] > tQmax[i])
278  S = q[i] - tQmax[i];
279  if (q[i] < tQmin[i])
280  S = q[i] - tQmin[i];
281  double D = (Qmax[i] - Qmin[i]);
282  h_s += vpMath::sqr(S) / D;
283  e2[i] = S / D;
284  }
285  h_s = beta * h_s / 2.0; // cost function
286  e2 *= beta;
287  std::cout << "Cost function h_s: " << h_s << std::endl;
288 
289  sec_task = task.secondaryTask(e2, de2dt);
290  }
291 
292  vpColVector v;
293  v = prim_task + sec_task;
294 
295  // Display the current and desired feature points in the image display
296  vpServoDisplay::display(task, cam, I);
297 
298  // Apply the computed joint velocities to the robot
300 
301  {
302  // Add the material to plot curves
303 
304  // q normalized between (entre -1 et 1)
305  for (unsigned int i = 0; i < 6; i++) {
306  data[i] = (q[i] - Qmiddle[i]);
307  data[i] /= (Qmax[i] - Qmin[i]);
308  data[i] *= 2;
309  }
310  unsigned int joint = 2;
311  data[6] = 2 * (tQmin[joint] - Qmiddle[joint]) / (Qmax[joint] - Qmin[joint]);
312  data[7] = 2 * (tQmax[joint] - Qmiddle[joint]) / (Qmax[joint] - Qmin[joint]);
313  data[8] = -1;
314  data[9] = 1;
315  plot.plot(0, iter, data); // plot q, Qmin, Qmax, tQmin, tQmax
316  plot.plot(1, 0, iter, h_s); // plot the cost function
317  }
318 
319  vpDisplay::flush(I);
320  }
321 
322  // Display task information
323  task.print();
324  return EXIT_SUCCESS;
325  } catch (const vpException &e) {
326  std::cout << "Catch an exception: " << e.getMessage() << std::endl;
327  return EXIT_FAILURE;
328  }
329 }
330 
331 #else
332 int main()
333 {
334  std::cout << "You do not have an Viper 850 robot connected to your computer..." << std::endl;
335  return EXIT_SUCCESS;
336 }
337 #endif
Class for firewire ieee1394 video devices using libdc1394-2.x api.
Generic class defining intrinsic camera parameters.
Implementation of column vector and the associated operations.
Definition: vpColVector.h:163
Class to define RGB colors available for display functionalities.
Definition: vpColor.h:152
static const vpColor red
Definition: vpColor.h:211
static const vpColor black
Definition: vpColor.h:205
static const vpColor cyan
Definition: vpColor.h:220
static const vpColor orange
Definition: vpColor.h:221
static const vpColor blue
Definition: vpColor.h:217
static const vpColor green
Definition: vpColor.h:214
The vpDisplayGTK allows to display image using the GTK 3rd party library. Thus to enable this class G...
Definition: vpDisplayGTK.h:128
The vpDisplayOpenCV allows to display image using the OpenCV library. Thus to enable this class OpenC...
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
Definition: vpDisplayX.h:128
static void display(const vpImage< unsigned char > &I)
static void displayCross(const vpImage< unsigned char > &I, const vpImagePoint &ip, unsigned int size, const vpColor &color, unsigned int thickness=1)
static void flush(const vpImage< unsigned char > &I)
This tracker is meant to track a blob (connex pixels with same gray level) on a vpImage.
Definition: vpDot2.h:124
void track(const vpImage< unsigned char > &I, bool canMakeTheWindowGrow=true)
Definition: vpDot2.cpp:435
vpImagePoint getCog() const
Definition: vpDot2.h:176
void initTracking(const vpImage< unsigned char > &I, unsigned int size=0)
Definition: vpDot2.cpp:254
error that can be emitted by ViSP classes.
Definition: vpException.h:59
const char * getMessage() const
Definition: vpException.cpp:64
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
void buildFrom(double x, double y, double Z)
void set_Z(double Z)
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:82
static double sqr(double x)
Definition: vpMath.h:201
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:146
This class enables real time drawing of 2D or 3D graphics. An instance of the class open a window whi...
Definition: vpPlot.h:109
void get_eJe(vpMatrix &eJe) vp_override
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) vp_override
@ ARTICULAR_FRAME
Definition: vpRobot.h:78
@ STATE_VELOCITY_CONTROL
Initialize the velocity controller.
Definition: vpRobot.h:65
virtual vpRobotStateType setRobotState(const vpRobot::vpRobotStateType newState)
Definition: vpRobot.cpp:198
static void display(const vpServo &s, const vpCameraParameters &cam, const vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:378
@ EYEINHAND_L_cVe_eJe
Definition: vpServo.h:162
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:329
void set_cVe(const vpVelocityTwistMatrix &cVe_)
Definition: vpServo.h:1028
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:169
void setLambda(double c)
Definition: vpServo.h:976
void set_eJe(const vpMatrix &eJe_)
Definition: vpServo.h:1091
vpColVector secondaryTask(const vpColVector &de2dt, const bool &useLargeProjectionOperator=false)
Definition: vpServo.cpp:1087
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:132
@ PSEUDO_INVERSE
Definition: vpServo.h:229
vpColVector computeControlLaw()
Definition: vpServo.cpp:703
@ DESIRED
Definition: vpServo.h:202
vpVelocityTwistMatrix get_cVe() const
Definition: vpUnicycle.h:70
void display(vpImage< unsigned char > &I, const std::string &title)
Display a gray-scale image.