Visual Servoing Platform  version 3.6.1 under development (2024-05-09)
servoViper850Point2DArtVelocity-jointAvoidance-basic.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See https://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * tests the control law
33  * eye-in-hand control
34  * velocity computed in articular
35  *
36 *****************************************************************************/
37 
47 #include <visp3/core/vpConfig.h>
48 #include <visp3/core/vpDebug.h> // Debug trace
49 
50 #include <cmath> // std::fabs
51 #include <fstream>
52 #include <iostream>
53 #include <limits> // numeric_limits
54 #include <sstream>
55 #include <stdio.h>
56 #include <stdlib.h>
57 
58 #if (defined(VISP_HAVE_VIPER850) && defined(VISP_HAVE_DC1394) && defined(VISP_HAVE_DISPLAY))
59 
60 #include <visp3/blob/vpDot2.h>
61 #include <visp3/core/vpDisplay.h>
62 #include <visp3/core/vpException.h>
63 #include <visp3/core/vpHomogeneousMatrix.h>
64 #include <visp3/core/vpImage.h>
65 #include <visp3/core/vpIoTools.h>
66 #include <visp3/core/vpMath.h>
67 #include <visp3/core/vpPoint.h>
68 #include <visp3/gui/vpDisplayGTK.h>
69 #include <visp3/gui/vpDisplayOpenCV.h>
70 #include <visp3/gui/vpDisplayX.h>
71 #include <visp3/gui/vpPlot.h>
72 #include <visp3/robot/vpRobotViper850.h>
73 #include <visp3/sensor/vp1394TwoGrabber.h>
74 #include <visp3/visual_features/vpFeatureBuilder.h>
75 #include <visp3/visual_features/vpFeaturePoint.h>
76 #include <visp3/vs/vpServo.h>
77 #include <visp3/vs/vpServoDisplay.h>
78 
79 int main()
80 {
81  try {
82  vpRobotViper850 robot;
83 
84  vpServo task;
85 
87 
88  bool reset = false;
89  vp1394TwoGrabber g(reset);
91  g.setFramerate(vp1394TwoGrabber::vpFRAMERATE_60);
92  g.open(I);
93 
94  g.acquire(I);
95 
96  double Tloop = 1. / 60.f;
97 
99  g.getFramerate(fps);
100  switch (fps) {
102  Tloop = 1.f / 15.f;
103  break;
105  Tloop = 1.f / 30.f;
106  break;
108  Tloop = 1.f / 60.f;
109  break;
111  Tloop = 1.f / 120.f;
112  break;
113  default:
114  break;
115  }
116  std::cout << "Tloop: " << Tloop << std::endl;
117 
118 #ifdef VISP_HAVE_X11
119  vpDisplayX display(I, 800, 100, "Current image");
120 #elif defined(HAVE_OPENCV_HIGHGUI)
121  vpDisplayOpenCV display(I, 800, 100, "Current image");
122 #elif defined(VISP_HAVE_GTK)
123  vpDisplayGTK display(I, 800, 100, "Current image");
124 #endif
125 
127  vpDisplay::flush(I);
128 
129  vpColVector jointMin(6), jointMax(6);
130  jointMin = robot.getJointMin();
131  jointMax = robot.getJointMax();
132 
133  vpColVector Qmin(6), tQmin(6);
134  vpColVector Qmax(6), tQmax(6);
135  vpColVector Qmiddle(6);
136  vpColVector data(10);
137 
138  double rho = 0.25;
139  for (unsigned int i = 0; i < 6; i++) {
140  Qmin[i] = jointMin[i] + 0.5 * rho * (jointMax[i] - jointMin[i]);
141  Qmax[i] = jointMax[i] - 0.5 * rho * (jointMax[i] - jointMin[i]);
142  }
143  Qmiddle = (Qmin + Qmax) / 2.;
144  double rho1 = 0.1;
145 
146  for (unsigned int i = 0; i < 6; i++) {
147  tQmin[i] = Qmin[i] + 0.5 * (rho1) * (Qmax[i] - Qmin[i]);
148  tQmax[i] = Qmax[i] - 0.5 * (rho1) * (Qmax[i] - Qmin[i]);
149  }
150 
151  vpColVector q(6);
152 
153  // Create a window with two graphics
154  // - first graphic to plot q(t), Qmin, Qmax, tQmin and tQmax
155  // - second graphic to plot the cost function h_s
156  vpPlot plot(2);
157 
158  // The first graphic contains 10 data to plot: q(t), Qmin, Qmax, tQmin and
159  // tQmax
160  plot.initGraph(0, 10);
161  plot.initGraph(1, 6);
162 
163  // For the first graphic :
164  // - along the x axis the expected values are between 0 and 200 and
165  // the step is 1
166  // - along the y axis the expected values are between -1.2 and 1.2 and the
167  // step is 0.1
168  plot.initRange(0, 0, 200, 1, -1.2, 1.2, 0.1);
169  plot.setTitle(0, "Joint behavior");
170  plot.initRange(1, 0, 200, 1, -0.01, 0.01, 0.05);
171  plot.setTitle(1, "Joint velocity");
172 
173  // For the first graphic, set the curves legend
174  std::string legend;
175  for (unsigned int i = 0; i < 6; i++) {
176  legend = "q" + i + 1;
177  plot.setLegend(0, i, legend);
178  plot.setLegend(1, i, legend);
179  }
180  plot.setLegend(0, 6, "tQmin");
181  plot.setLegend(0, 7, "tQmax");
182  plot.setLegend(0, 8, "Qmin");
183  plot.setLegend(0, 9, "Qmax");
184 
185  // Set the curves color
186  plot.setColor(0, 0, vpColor::red);
187  plot.setColor(0, 1, vpColor::green);
188  plot.setColor(0, 2, vpColor::blue);
189  plot.setColor(0, 3, vpColor::orange);
190  plot.setColor(0, 4, vpColor(0, 128, 0));
191  plot.setColor(0, 5, vpColor::cyan);
192  for (unsigned int i = 6; i < 10; i++)
193  plot.setColor(0, i, vpColor::black); // for Q and tQ [min,max]
194  // Set the curves color
195 
196  plot.setColor(1, 0, vpColor::red);
197  plot.setColor(1, 1, vpColor::green);
198  plot.setColor(1, 2, vpColor::blue);
199  plot.setColor(1, 3, vpColor::orange);
200  plot.setColor(1, 4, vpColor(0, 128, 0));
201  plot.setColor(1, 5, vpColor::cyan);
202  vpDot2 dot;
203 
204  std::cout << "Click on a dot..." << std::endl;
205  dot.initTracking(I);
206  vpImagePoint cog = dot.getCog();
208  vpDisplay::flush(I);
209 
210  vpCameraParameters cam;
211  // Update camera parameters
212  robot.getCameraParameters(cam, I);
213 
214  // sets the current position of the visual feature
215  vpFeaturePoint p;
216  vpFeatureBuilder::create(p, cam, dot); // retrieve x,y and Z of the vpPoint structure
217 
218  p.set_Z(1);
219  // sets the desired position of the visual feature
220  vpFeaturePoint pd;
221  pd.buildFrom(0, 0, 1);
222 
223  // Define the task
224  // - we want an eye-in-hand control law
225  // - articular velocity are computed
228 
230  robot.get_cVe(cVe);
231  std::cout << cVe << std::endl;
232  task.set_cVe(cVe);
233 
234  // - Set the Jacobian (expressed in the end-effector frame)") ;
235  vpMatrix eJe;
236  robot.get_eJe(eJe);
237  task.set_eJe(eJe);
238 
239  // - we want to see a point on a point..") ;
240  std::cout << std::endl;
241  task.addFeature(p, pd);
242 
243  // - set the gain
244  double lambda = 0.8;
245  // set to -1 to suppress the lambda used in the
246  // vpServo::computeControlLaw()
247  task.setLambda(-1);
248 
249  // Display task information " ) ;
250  task.print();
251 
253 
254  int iter = 0;
255  double t_1 = vpTime::measureTimeMs();
256 
257  std::cout << "\nHit CTRL-C to stop the loop...\n" << std::flush;
258  for (;;) {
259  iter++;
260 
261  double t_0 = vpTime::measureTimeMs(); // t_0: current time
262 
263  // Update loop time in second
264  double Tv = (double)(t_0 - t_1) / 1000.0;
265  std::cout << "Tv: " << Tv << std::endl;
266 
267  // Update time for next iteration
268  t_1 = t_0;
269 
270  // Acquire a new image from the camera
271  dc1394video_frame_t *frame = g.dequeue(I);
272 
273  // Display this image
275 
276  // Achieve the tracking of the dot in the image
277  dot.track(I);
278  cog = dot.getCog();
279 
280  // Display a green cross at the center of gravity position in the image
282 
283  // Get the measured joint positions of the robot
284  robot.getPosition(vpRobot::ARTICULAR_FRAME, q);
285 
286  // Update the point feature from the dot location
287  vpFeatureBuilder::create(p, cam, dot);
288 
289  // Get the jacobian of the robot
290  robot.get_eJe(eJe);
291  // Update this jacobian in the task structure. It will be used to
292  // compute the velocity skew (as an articular velocity) qdot = -lambda *
293  // L^+ * cVe * eJe * (s-s*)
294  task.set_eJe(eJe);
295 
296  vpColVector prim_task;
297  vpColVector e2(6);
298  // Compute the visual servoing skew vector
299  prim_task = task.computeControlLaw();
300 
301  vpColVector qpre(6);
302 
303  qpre = q;
304  qpre += -lambda * prim_task * (4 * Tloop);
305 
306  // Identify the joints near the limits
307  vpColVector pb(6);
308  pb = 0;
309  unsigned int npb = 0;
310  for (unsigned int i = 0; i < 6; i++) {
311  if (q[i] < tQmin[i])
312  if (fabs(Qmin[i] - q[i]) > fabs(Qmin[i] - qpre[i])) {
313  pb[i] = 1;
314  npb++;
315  std::cout << "Joint " << i << " near limit " << std::endl;
316  }
317  if (q[i] > tQmax[i]) {
318  if (fabs(Qmax[i] - q[i]) > fabs(Qmax[i] - qpre[i])) {
319  pb[i] = 1;
320  npb++;
321  std::cout << "Joint " << i << " near limit " << std::endl;
322  }
323  }
324  }
325 
326  vpColVector a0;
327  vpMatrix J1 = task.getTaskJacobian();
328  vpMatrix kernelJ1;
329  J1.kernel(kernelJ1);
330 
331  unsigned int dimKernelL = kernelJ1.getCols();
332  if (npb != 0) {
333  // Build linear system a0*E = S
334  vpMatrix E(npb, dimKernelL);
335  vpColVector S(npb);
336 
337  unsigned int k = 0;
338 
339  for (unsigned int j = 0; j < 6; j++) // j is the joint
340  if (std::fabs(pb[j] - 1) <= std::numeric_limits<double>::epsilon()) {
341  for (unsigned int i = 0; i < dimKernelL; i++)
342  E[k][i] = kernelJ1[j][i];
343 
344  S[k] = -prim_task[j];
345  k++;
346  }
347  vpMatrix Ep;
348  // vpTRACE("nbp %d", npb);
349  Ep = E.t() * (E * E.t()).pseudoInverse();
350  a0 = Ep * S;
351 
352  e2 = (kernelJ1 * a0);
353  // cout << "e2 " << e2.t() ;
354  } else {
355  e2 = 0;
356  }
357  // std::cout << "e2: " << e2.t() << std::endl;
358 
359  vpColVector v;
360  v = -lambda * (prim_task + e2);
361 
362  // Display the current and desired feature points in the image display
363  vpServoDisplay::display(task, cam, I);
364 
365  // Apply the computed joint velocities to the robot
367 
368  {
369  // Add the material to plot curves
370 
371  // q normalized between (entre -1 et 1)
372  for (unsigned int i = 0; i < 6; i++) {
373  data[i] = (q[i] - Qmiddle[i]);
374  data[i] /= (Qmax[i] - Qmin[i]);
375  data[i] *= 2;
376  }
377  unsigned int joint = 2;
378  data[6] = 2 * (tQmin[joint] - Qmiddle[joint]) / (Qmax[joint] - Qmin[joint]);
379  data[7] = 2 * (tQmax[joint] - Qmiddle[joint]) / (Qmax[joint] - Qmin[joint]);
380  data[8] = -1;
381  data[9] = 1;
382 
383  plot.plot(0, iter, data); // plot q, Qmin, Qmax, tQmin, tQmax
384  plot.plot(1, iter, v); // plot joint velocities applied to the robot
385  }
386 
387  vpDisplay::flush(I);
388 
389  // Synchronize the loop with the image frame rate
390  vpTime::wait(t_0, 1000. * Tloop);
391  // Release the ring buffer used for the last image to start a new acq
392  g.enqueue(frame);
393  }
394 
395  // Display task information
396  task.print();
397  return EXIT_SUCCESS;
398  } catch (const vpException &e) {
399  std::cout << "Catch an exception: " << e.getMessage() << std::endl;
400  return EXIT_FAILURE;
401  }
402 }
403 
404 #else
405 int main()
406 {
407  std::cout << "You do not have an Viper 850 robot connected to your computer..." << std::endl;
408  return EXIT_SUCCESS;
409 }
410 #endif
Class for firewire ieee1394 video devices using libdc1394-2.x api.
unsigned int getCols() const
Definition: vpArray2D.h:327
Generic class defining intrinsic camera parameters.
Implementation of column vector and the associated operations.
Definition: vpColVector.h:163
Class to define RGB colors available for display functionalities.
Definition: vpColor.h:152
static const vpColor red
Definition: vpColor.h:211
static const vpColor black
Definition: vpColor.h:205
static const vpColor cyan
Definition: vpColor.h:220
static const vpColor orange
Definition: vpColor.h:221
static const vpColor blue
Definition: vpColor.h:217
static const vpColor green
Definition: vpColor.h:214
The vpDisplayGTK allows to display image using the GTK 3rd party library. Thus to enable this class G...
Definition: vpDisplayGTK.h:128
The vpDisplayOpenCV allows to display image using the OpenCV library. Thus to enable this class OpenC...
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
Definition: vpDisplayX.h:128
static void display(const vpImage< unsigned char > &I)
static void displayCross(const vpImage< unsigned char > &I, const vpImagePoint &ip, unsigned int size, const vpColor &color, unsigned int thickness=1)
static void flush(const vpImage< unsigned char > &I)
This tracker is meant to track a blob (connex pixels with same gray level) on a vpImage.
Definition: vpDot2.h:124
void track(const vpImage< unsigned char > &I, bool canMakeTheWindowGrow=true)
Definition: vpDot2.cpp:435
vpImagePoint getCog() const
Definition: vpDot2.h:176
void initTracking(const vpImage< unsigned char > &I, unsigned int size=0)
Definition: vpDot2.cpp:254
error that can be emitted by ViSP classes.
Definition: vpException.h:59
const char * getMessage() const
Definition: vpException.cpp:64
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
void buildFrom(double x, double y, double Z)
void set_Z(double Z)
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:82
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:146
unsigned int kernel(vpMatrix &kerAt, double svThreshold=1e-6) const
Definition: vpMatrix.cpp:6056
vpMatrix t() const
Definition: vpMatrix.cpp:465
This class enables real time drawing of 2D or 3D graphics. An instance of the class open a window whi...
Definition: vpPlot.h:109
void get_eJe(vpMatrix &eJe) vp_override
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) vp_override
@ ARTICULAR_FRAME
Definition: vpRobot.h:78
@ STATE_VELOCITY_CONTROL
Initialize the velocity controller.
Definition: vpRobot.h:65
virtual vpRobotStateType setRobotState(const vpRobot::vpRobotStateType newState)
Definition: vpRobot.cpp:198
static void display(const vpServo &s, const vpCameraParameters &cam, const vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:378
@ EYEINHAND_L_cVe_eJe
Definition: vpServo.h:162
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:329
void set_cVe(const vpVelocityTwistMatrix &cVe_)
Definition: vpServo.h:1028
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:169
void setLambda(double c)
Definition: vpServo.h:976
void set_eJe(const vpMatrix &eJe_)
Definition: vpServo.h:1091
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:132
vpMatrix getTaskJacobian() const
Definition: vpServo.h:568
@ PSEUDO_INVERSE
Definition: vpServo.h:229
vpColVector computeControlLaw()
Definition: vpServo.cpp:703
@ DESIRED
Definition: vpServo.h:202
vpVelocityTwistMatrix get_cVe() const
Definition: vpUnicycle.h:70
void display(vpImage< unsigned char > &I, const std::string &title)
Display a gray-scale image.
VISP_EXPORT int wait(double t0, double t)
VISP_EXPORT double measureTimeMs()