Visual Servoing Platform  version 3.6.1 under development (2024-04-18)
servoSimuFourPoints2DCamVelocityDisplay.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See https://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * Simulation of a 2D visual servoing using 4 points as visual feature.
33  *
34 *****************************************************************************/
35 
52 #include <iostream>
53 
54 #include <visp3/core/vpConfig.h>
55 
56 #if (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GTK) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_OPENCV)) && \
57  (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
58 
59 #include <stdio.h>
60 #include <stdlib.h>
61 
62 #include <visp3/core/vpCameraParameters.h>
63 #include <visp3/core/vpHomogeneousMatrix.h>
64 #include <visp3/core/vpImage.h>
65 #include <visp3/core/vpMath.h>
66 #include <visp3/gui/vpDisplayGDI.h>
67 #include <visp3/gui/vpDisplayGTK.h>
68 #include <visp3/gui/vpDisplayOpenCV.h>
69 #include <visp3/gui/vpDisplayX.h>
70 #include <visp3/gui/vpProjectionDisplay.h>
71 #include <visp3/io/vpParseArgv.h>
72 #include <visp3/robot/vpSimulatorCamera.h>
73 #include <visp3/visual_features/vpFeatureBuilder.h>
74 #include <visp3/visual_features/vpFeaturePoint.h>
75 #include <visp3/vs/vpServo.h>
76 #include <visp3/vs/vpServoDisplay.h>
77 
78 // List of allowed command line options
79 #define GETOPTARGS "cdh"
80 
81 void usage(const char *name, const char *badparam);
82 bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display);
83 
92 void usage(const char *name, const char *badparam)
93 {
94  fprintf(stdout, "\n\
95 Tests a control law with the following characteristics:\n\
96 - eye-in-hand control\n\
97 - articular velocity are computed\n\
98 - servo on 4 points,\n\
99 - internal and external camera view displays.\n\
100  \n\
101 SYNOPSIS\n\
102  %s [-c] [-d] [-h]\n",
103  name);
104 
105  fprintf(stdout, "\n\
106 OPTIONS: Default\n\
107  -c\n\
108  Disable the mouse click. Useful to automate the \n\
109  execution of this program without human intervention.\n\
110  \n\
111  -d \n\
112  Turn off the display.\n\
113  \n\
114  -h\n\
115  Print the help.\n");
116 
117  if (badparam)
118  fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
119 }
132 bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display)
133 {
134  const char *optarg_;
135  int c;
136  while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
137 
138  switch (c) {
139  case 'c':
140  click_allowed = false;
141  break;
142  case 'd':
143  display = false;
144  break;
145  case 'h':
146  usage(argv[0], nullptr);
147  return false;
148 
149  default:
150  usage(argv[0], optarg_);
151  return false;
152  }
153  }
154 
155  if ((c == 1) || (c == -1)) {
156  // standalone param or error
157  usage(argv[0], nullptr);
158  std::cerr << "ERROR: " << std::endl;
159  std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
160  return false;
161  }
162 
163  return true;
164 }
165 
166 int main(int argc, const char **argv)
167 {
168  try {
169  bool opt_click_allowed = true;
170  bool opt_display = true;
171 
172  // Read the command line options
173  if (getOptions(argc, argv, opt_click_allowed, opt_display) == false) {
174  return EXIT_FAILURE;
175  }
176 
177 // We open two displays, one for the internal camera view, the other one for
178 // the external view, using either X11, GTK or GDI.
179 #if defined(VISP_HAVE_X11)
180  vpDisplayX displayInt;
181  vpDisplayX displayExt;
182 #elif defined(VISP_HAVE_GTK)
183  vpDisplayGTK displayInt;
184  vpDisplayGTK displayExt;
185 #elif defined(VISP_HAVE_GDI)
186  vpDisplayGDI displayInt;
187  vpDisplayGDI displayExt;
188 #elif defined(HAVE_OPENCV_HIGHGUI)
189  vpDisplayOpenCV displayInt;
190  vpDisplayOpenCV displayExt;
191 #endif
192 
193  // open a display for the visualization
194 
195  vpImage<unsigned char> Iint(300, 300, 0);
196  vpImage<unsigned char> Iext(300, 300, 0);
197 
198  if (opt_display) {
199  displayInt.init(Iint, 0, 0, "Internal view");
200  displayExt.init(Iext, 330, 000, "External view");
201  }
202  vpProjectionDisplay externalview;
203 
204  double px = 500, py = 500;
205  double u0 = 150, v0 = 160;
206 
207  vpCameraParameters cam(px, py, u0, v0);
208 
209  vpServo task;
210  vpSimulatorCamera robot;
211 
212  std::cout << std::endl;
213  std::cout << "----------------------------------------------" << std::endl;
214  std::cout << " Test program for vpServo " << std::endl;
215  std::cout << " Eye-in-hand task control, articular velocity are computed" << std::endl;
216  std::cout << " Simulation " << std::endl;
217  std::cout << " task : servo 4 points " << std::endl;
218  std::cout << "----------------------------------------------" << std::endl;
219  std::cout << std::endl;
220 
221  // sets the initial camera location
222  vpHomogeneousMatrix cMo(-0.1, -0.1, 1, vpMath::rad(40), vpMath::rad(10), vpMath::rad(60));
223 
224  // Compute the position of the object in the world frame
225  vpHomogeneousMatrix wMc, wMo;
226  robot.getPosition(wMc);
227  wMo = wMc * cMo;
228 
229  vpHomogeneousMatrix cextMo(0, 0, 2, 0, 0, 0); // vpMath::rad(40), vpMath::rad(10), vpMath::rad(60));
230 
231  // sets the point coordinates in the object frame
232  vpPoint point[4];
233  point[0].setWorldCoordinates(-0.1, -0.1, 0);
234  point[1].setWorldCoordinates(0.1, -0.1, 0);
235  point[2].setWorldCoordinates(0.1, 0.1, 0);
236  point[3].setWorldCoordinates(-0.1, 0.1, 0);
237 
238  for (unsigned i = 0; i < 4; i++)
239  externalview.insert(point[i]);
240 
241  // computes the point coordinates in the camera frame and its 2D
242  // coordinates
243  for (unsigned i = 0; i < 4; i++)
244  point[i].track(cMo);
245 
246  // sets the desired position of the point
247  vpFeaturePoint p[4];
248  for (unsigned i = 0; i < 4; i++)
249  vpFeatureBuilder::create(p[i], point[i]); // retrieve x,y and Z of the vpPoint structure
250 
251  // sets the desired position of the feature point s*
252  vpFeaturePoint pd[4];
253 
254  pd[0].buildFrom(-0.1, -0.1, 1);
255  pd[1].buildFrom(0.1, -0.1, 1);
256  pd[2].buildFrom(0.1, 0.1, 1);
257  pd[3].buildFrom(-0.1, 0.1, 1);
258 
259  // define the task
260  // - we want an eye-in-hand control law
261  // - articular velocity are computed
264 
265  // Set the position of the end-effector frame in the camera frame as identity
267  vpVelocityTwistMatrix cVe(cMe);
268  task.set_cVe(cVe);
269 
270  // Set the Jacobian (expressed in the end-effector frame
271  vpMatrix eJe;
272  robot.get_eJe(eJe);
273  task.set_eJe(eJe);
274 
275  // we want to see a point on a point
276  for (unsigned i = 0; i < 4; i++)
277  task.addFeature(p[i], pd[i]);
278 
279  // set the gain
280  task.setLambda(1);
281 
282  // Display task information
283  task.print();
284 
285  unsigned int iter = 0;
286  // loop
287  while (iter++ < 200) {
288  std::cout << "---------------------------------------------" << iter << std::endl;
289  vpColVector v;
290 
291  // Set the Jacobian (expressed in the end-effector frame)
292  // since q is modified eJe is modified
293  robot.get_eJe(eJe);
294  task.set_eJe(eJe);
295 
296  // get the robot position
297  robot.getPosition(wMc);
298  // Compute the position of the object frame in the camera frame
299  cMo = wMc.inverse() * wMo;
300 
301  // update new point position and corresponding features
302  for (unsigned i = 0; i < 4; i++) {
303  point[i].track(cMo);
304  // retrieve x,y and Z of the vpPoint structure
305  vpFeatureBuilder::create(p[i], point[i]);
306  }
307  // since vpServo::MEAN interaction matrix is used, we need also to
308  // update the desired features at each iteration
309  pd[0].buildFrom(-0.1, -0.1, 1);
310  pd[1].buildFrom(0.1, -0.1, 1);
311  pd[2].buildFrom(0.1, 0.1, 1);
312  pd[3].buildFrom(-0.1, 0.1, 1);
313 
314  if (opt_display) {
315  vpDisplay::display(Iint);
316  vpDisplay::display(Iext);
317  vpServoDisplay::display(task, cam, Iint);
318  externalview.display(Iext, cextMo, cMo, cam, vpColor::green);
319  vpDisplay::flush(Iint);
320  vpDisplay::flush(Iext);
321  }
322 
323  // compute the control law
324  v = task.computeControlLaw();
325 
326  // send the camera velocity to the controller
328 
329  std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
330  }
331 
332  // Display task information
333  task.print();
334 
335  std::cout << "Final robot position with respect to the object frame:\n";
336  cMo.print();
337 
338  if (opt_display && opt_click_allowed) {
339  vpDisplay::displayText(Iint, 20, 20, "Click to quit...", vpColor::white);
340  vpDisplay::flush(Iint);
341  vpDisplay::getClick(Iint);
342  }
343  return EXIT_SUCCESS;
344  } catch (const vpException &e) {
345  std::cout << "Catch a ViSP exception: " << e << std::endl;
346  return EXIT_FAILURE;
347  }
348 }
349 #elif !(defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
350 int main()
351 {
352  std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
353  return EXIT_SUCCESS;
354 }
355 #else
356 int main()
357 {
358  std::cout << "You do not have X11, or GTK, or GDI (Graphical Device Interface) functionalities to display images..."
359  << std::endl;
360  std::cout << "Tip if you are on a unix-like system:" << std::endl;
361  std::cout << "- Install X11, configure again ViSP using cmake and build again this example" << std::endl;
362  std::cout << "Tip if you are on a windows-like system:" << std::endl;
363  std::cout << "- Install GDI, configure again ViSP using cmake and build again this example" << std::endl;
364  return EXIT_SUCCESS;
365 }
366 #endif
Generic class defining intrinsic camera parameters.
Implementation of column vector and the associated operations.
Definition: vpColVector.h:163
static const vpColor white
Definition: vpColor.h:206
static const vpColor green
Definition: vpColor.h:214
Display for windows using GDI (available on any windows 32 platform).
Definition: vpDisplayGDI.h:128
The vpDisplayGTK allows to display image using the GTK 3rd party library. Thus to enable this class G...
Definition: vpDisplayGTK.h:128
The vpDisplayOpenCV allows to display image using the OpenCV library. Thus to enable this class OpenC...
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
Definition: vpDisplayX.h:128
void init(vpImage< unsigned char > &I, int win_x=-1, int win_y=-1, const std::string &win_title="") vp_override
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
static void display(const vpImage< unsigned char > &I)
static void flush(const vpImage< unsigned char > &I)
static void displayText(const vpImage< unsigned char > &I, const vpImagePoint &ip, const std::string &s, const vpColor &color)
error that can be emitted by ViSP classes.
Definition: vpException.h:59
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
void buildFrom(double x, double y, double Z)
void track(const vpHomogeneousMatrix &cMo)
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
static double rad(double deg)
Definition: vpMath.h:127
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:146
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:69
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:77
void setWorldCoordinates(double oX, double oY, double oZ)
Definition: vpPoint.cpp:110
interface with the image for feature display
void display(vpImage< unsigned char > &I, const vpHomogeneousMatrix &cextMo, const vpHomogeneousMatrix &cMo, const vpCameraParameters &cam, const vpColor &color, const bool &displayTraj=false, unsigned int thickness=1)
void insert(vpForwardProjection &fp)
void get_eJe(vpMatrix &eJe) vp_override
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) vp_override
@ CAMERA_FRAME
Definition: vpRobot.h:82
static void display(const vpServo &s, const vpCameraParameters &cam, const vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:378
@ EYEINHAND_L_cVe_eJe
Definition: vpServo.h:162
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:329
void set_cVe(const vpVelocityTwistMatrix &cVe_)
Definition: vpServo.h:1028
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:169
void setLambda(double c)
Definition: vpServo.h:976
void set_eJe(const vpMatrix &eJe_)
Definition: vpServo.h:1091
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:132
vpColVector getError() const
Definition: vpServo.h:504
vpColVector computeControlLaw()
Definition: vpServo.cpp:703
@ MEAN
Definition: vpServo.h:208
Class that defines the simplest robot: a free flying camera.
void display(vpImage< unsigned char > &I, const std::string &title)
Display a gray-scale image.