Example of eye-in-hand control law. We control here a real robot, the ptu-46 robot (pan-tilt head provided by Directed Perception). The velocity is computed in articular. The visual feature is the center of gravity of a point.
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpDebug.h>
#if !defined(_WIN32) && (defined(__unix__) || defined(__unix) || (defined(__APPLE__) && defined(__MACH__)))
#include <unistd.h>
#endif
#include <signal.h>
#if defined(VISP_HAVE_PTU46) && defined(VISP_HAVE_DC1394)
#include <mutex>
#include <visp3/core/vpDisplay.h>
#include <visp3/core/vpImage.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/sensor/vp1394TwoGrabber.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpMath.h>
#include <visp3/core/vpPoint.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeaturePoint.h>
#include <visp3/vs/vpServo.h>
#include <visp3/robot/vpRobotPtu46.h>
#include <visp3/core/vpException.h>
#include <visp3/vs/vpServoDisplay.h>
#include <visp3/blob/vpDot2.h>
std::mutex mutexEndLoop;
void signalCtrC(int signumber)
{
(void)(signumber);
mutexEndLoop.unlock();
usleep(1000 * 10);
}
int main()
{
std::cout << std::endl;
std::cout << "-------------------------------------------------------" << std::endl;
std::cout << " Test program for vpServo " << std::endl;
std::cout << " Eye-in-hand task control, velocity computed in the camera frame" << std::endl;
std::cout << " Simulation " << std::endl;
std::cout << " task : servo a point " << std::endl;
std::cout << "-------------------------------------------------------" << std::endl;
std::cout << std::endl;
try {
mutexEndLoop.lock();
signal(SIGINT, &signalCtrC);
{
q = 0;
}
try {
}
catch (...) {
return EXIT_FAILURE;
}
try {
}
catch (...) {
return EXIT_FAILURE;
}
try {
}
catch (...) {
return EXIT_FAILURE;
}
vpTRACE(
"sets the current position of the visual feature ");
vpTRACE(
"sets the desired position of the visual feature ");
vpTRACE(
"\t we want an eye-in-hand control law");
vpTRACE(
"\t articular velocity are computed");
vpTRACE(
"Set the position of the end-effector frame in the camera frame");
std::cout << cVe << std::endl;
vpTRACE(
"Set the Jacobian (expressed in the end-effector frame)");
vpTRACE(
"\t we want to see a point on a point..");
std::cout << std::endl;
vpTRACE(
"Display task information ");
unsigned int iter = 0;
while (0 != mutexEndLoop.trylock()) {
std::cout << "---------------------------------------------" << iter << std::endl;
}
vpTRACE(
"Display task information ");
}
std::cout << "Sorry PtU46 not available. Got exception: " << e << std::endl;
return EXIT_FAILURE
}
return EXIT_SUCCESS;
}
#else
int main() { std::cout << "You do not have an PTU46 PT robot connected to your computer..." << std::endl; }
#endif
Class for firewire ieee1394 video devices using libdc1394-2.x api.
void acquire(vpImage< unsigned char > &I)
void open(vpImage< unsigned char > &I)
Generic class defining intrinsic camera parameters.
Implementation of column vector and the associated operations.
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
static void display(const vpImage< unsigned char > &I)
static void flush(const vpImage< unsigned char > &I)
This tracker is meant to track a blob (connex pixels with same gray level) on a vpImage.
void track(const vpImage< unsigned char > &I, bool canMakeTheWindowGrow=true)
void setCog(const vpImagePoint &ip)
error that can be emitted by ViSP classes.
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
void buildFrom(double x, double y, double Z)
Implementation of an homogeneous matrix and operations on such kind of matrices.
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Implementation of a matrix and operations on matrices.
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) override
void get_eJe(vpMatrix &eJe) override
Interface for the Directed Perception ptu-46 pan, tilt head .
@ STATE_POSITION_CONTROL
Initialize the position controller.
@ STATE_VELOCITY_CONTROL
Initialize the velocity controller.
virtual vpRobotStateType setRobotState(const vpRobot::vpRobotStateType newState)
static void display(const vpServo &s, const vpCameraParameters &cam, const vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
void set_cVe(const vpVelocityTwistMatrix &cVe_)
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
void set_eJe(const vpMatrix &eJe_)
void setServo(const vpServoType &servo_type)
vpColVector getError() const
vpColVector computeControlLaw()
vpVelocityTwistMatrix get_cVe() const
void display(vpImage< unsigned char > &I, const std::string &title)
Display a gray-scale image.