Visual Servoing Platform  version 3.6.1 under development (2024-05-09)
servoAfma6Point2DArtVelocity.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See https://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * tests the control law
33  * eye-in-hand control
34  * velocity computed in articular
35  *
36 *****************************************************************************/
37 
57 #include <fstream>
58 #include <iostream>
59 #include <sstream>
60 #include <stdio.h>
61 #include <stdlib.h>
62 #include <visp3/core/vpConfig.h>
63 #include <visp3/core/vpDebug.h> // Debug trace
64 #if (defined(VISP_HAVE_AFMA6) && defined(VISP_HAVE_DC1394))
65 
66 #include <visp3/core/vpDisplay.h>
67 #include <visp3/core/vpImage.h>
68 #include <visp3/core/vpImagePoint.h>
69 #include <visp3/gui/vpDisplayGTK.h>
70 #include <visp3/gui/vpDisplayOpenCV.h>
71 #include <visp3/gui/vpDisplayX.h>
72 #include <visp3/sensor/vp1394TwoGrabber.h>
73 
74 #include <visp3/core/vpHomogeneousMatrix.h>
75 #include <visp3/core/vpIoTools.h>
76 #include <visp3/core/vpMath.h>
77 #include <visp3/core/vpPoint.h>
78 #include <visp3/robot/vpRobotAfma6.h>
79 #include <visp3/visual_features/vpFeatureBuilder.h>
80 #include <visp3/visual_features/vpFeaturePoint.h>
81 #include <visp3/vs/vpServo.h>
82 
83 // Exception
84 #include <visp3/core/vpException.h>
85 #include <visp3/vs/vpServoDisplay.h>
86 
87 #include <visp3/blob/vpDot.h>
88 
89 int main()
90 {
91  // Log file creation in /tmp/$USERNAME/log.dat
92  // This file contains by line:
93  // - the 6 computed joint velocities (m/s, rad/s) to achieve the task
94  // - the 6 mesured joint velocities (m/s, rad/s)
95  // - the 6 mesured joint positions (m, rad)
96  // - the 2 values of s - s*
97  std::string username;
98  // Get the user login name
99  vpIoTools::getUserName(username);
100 
101  // Create a log filename to save velocities...
102  std::string logdirname;
103  logdirname = "/tmp/" + username;
104 
105  // Test if the output path exist. If no try to create it
106  if (vpIoTools::checkDirectory(logdirname) == false) {
107  try {
108  // Create the dirname
109  vpIoTools::makeDirectory(logdirname);
110  } catch (...) {
111  std::cerr << std::endl << "ERROR:" << std::endl;
112  std::cerr << " Cannot create " << logdirname << std::endl;
113  return EXIT_FAILURE;
114  }
115  }
116  std::string logfilename;
117  logfilename = logdirname + "/log.dat";
118 
119  // Open the log file name
120  std::ofstream flog(logfilename.c_str());
121 
122  try {
123  vpServo task;
124 
126 
130  g.open(I);
131 
132  g.acquire(I);
133 
134 #ifdef VISP_HAVE_X11
135  vpDisplayX display(I, 100, 100, "Current image");
136 #elif defined(HAVE_OPENCV_HIGHGUI)
137  vpDisplayOpenCV display(I, 100, 100, "Current image");
138 #elif defined(VISP_HAVE_GTK)
139  vpDisplayGTK display(I, 100, 100, "Current image");
140 #endif
141 
143  vpDisplay::flush(I);
144  // exit(1) ;
145 
146  std::cout << std::endl;
147  std::cout << "-------------------------------------------------------" << std::endl;
148  std::cout << " Test program for vpServo " << std::endl;
149  std::cout << " Eye-in-hand task control, velocity computed in the joint space" << std::endl;
150  std::cout << " Use of the Afma6 robot " << std::endl;
151  std::cout << " task : servo a point " << std::endl;
152  std::cout << "-------------------------------------------------------" << std::endl;
153  std::cout << std::endl;
154 
155  vpDot dot;
156  vpImagePoint cog;
157 
158  std::cout << "Click on a dot..." << std::endl;
159  dot.initTracking(I);
160  // Get the dot cog
161  cog = dot.getCog();
163  vpDisplay::flush(I);
164 
165  vpRobotAfma6 robot;
166 
167  vpCameraParameters cam;
168  // Update camera parameters
169  robot.getCameraParameters(cam, I);
170 
171  vpTRACE("sets the current position of the visual feature ");
172  vpFeaturePoint p;
173  vpFeatureBuilder::create(p, cam, dot); // retrieve x,y and Z of the vpPoint structure
174 
175  p.set_Z(1);
176  vpTRACE("sets the desired position of the visual feature ");
177  vpFeaturePoint pd;
178  pd.buildFrom(0, 0, 1);
179 
180  vpTRACE("define the task");
181  vpTRACE("\t we want an eye-in-hand control law");
182  vpTRACE("\t articular velocity are computed");
185 
186  vpTRACE("Set the position of the end-effector frame in the camera frame");
188  // robot.get_cMe(cMe) ;
189 
191  robot.get_cVe(cVe);
192  std::cout << cVe << std::endl;
193  task.set_cVe(cVe);
194 
195  // vpDisplay::getClick(I) ;
196  vpTRACE("Set the Jacobian (expressed in the end-effector frame)");
197  vpMatrix eJe;
198  robot.get_eJe(eJe);
199  task.set_eJe(eJe);
200 
201  vpTRACE("\t we want to see a point on a point..");
202  std::cout << std::endl;
203  task.addFeature(p, pd);
204 
205  vpTRACE("\t set the gain");
206  task.setLambda(0.8);
207 
208  vpTRACE("Display task information ");
209  task.print();
210 
212 
213  std::cout << "\nHit CTRL-C to stop the loop...\n" << std::flush;
214  for (;;) {
215  // Acquire a new image from the camera
216  g.acquire(I);
217 
218  // Display this image
220 
221  // Achieve the tracking of the dot in the image
222  dot.track(I);
223 
224  // Get the dot cog
225  cog = dot.getCog();
226 
227  // Display a green cross at the center of gravity position in the image
229 
230  // Update the point feature from the dot location
231  vpFeatureBuilder::create(p, cam, dot);
232 
233  // Get the jacobian of the robot
234  robot.get_eJe(eJe);
235  // Update this jacobian in the task structure. It will be used to
236  // compute the velocity skew (as an articular velocity) qdot = -lambda *
237  // L^+ * cVe * eJe * (s-s*)
238  task.set_eJe(eJe);
239 
240  // std::cout << (vpMatrix)cVe*eJe << std::endl ;
241 
242  vpColVector v;
243  // Compute the visual servoing skew vector
244  v = task.computeControlLaw();
245 
246  // Display the current and desired feature points in the image display
247  vpServoDisplay::display(task, cam, I);
248 
249  // Apply the computed joint velocities to the robot
251 
252  // Save velocities applied to the robot in the log file
253  // v[0], v[1], v[2] correspond to joint translation velocities in m/s
254  // v[3], v[4], v[5] correspond to joint rotation velocities in rad/s
255  flog << v[0] << " " << v[1] << " " << v[2] << " " << v[3] << " " << v[4] << " " << v[5] << " ";
256 
257  // Get the measured joint velocities of the robot
258  vpColVector qvel;
260  // Save measured joint velocities of the robot in the log file:
261  // - qvel[0], qvel[1], qvel[2] correspond to measured joint translation
262  // velocities in m/s
263  // - qvel[3], qvel[4], qvel[5] correspond to measured joint rotation
264  // velocities in rad/s
265  flog << qvel[0] << " " << qvel[1] << " " << qvel[2] << " " << qvel[3] << " " << qvel[4] << " " << qvel[5] << " ";
266 
267  // Get the measured joint positions of the robot
268  vpColVector q;
269  robot.getPosition(vpRobot::ARTICULAR_FRAME, q);
270  // Save measured joint positions of the robot in the log file
271  // - q[0], q[1], q[2] correspond to measured joint translation
272  // positions in m
273  // - q[3], q[4], q[5] correspond to measured joint rotation
274  // positions in rad
275  flog << q[0] << " " << q[1] << " " << q[2] << " " << q[3] << " " << q[4] << " " << q[5] << " ";
276 
277  // Save feature error (s-s*) for the feature point. For this feature
278  // point, we have 2 errors (along x and y axis). This error is
279  // expressed in meters in the camera frame
280  flog << (task.getError()).t() << std::endl;
281  vpDisplay::flush(I);
282 
283  // vpTRACE("\t\t || s - s* || = %f ", ( task.getError()
284  // ).sumSquare()) ;
285  }
286 
287  flog.close(); // Close the log file
288 
289  vpTRACE("Display task information ");
290  task.print();
291  return EXIT_SUCCESS;
292  } catch (const vpException &e) {
293  flog.close(); // Close the log file
294  std::cout << "Test failed with exception: " << e << std::endl;
295  return EXIT_FAILURE;
296  }
297 }
298 
299 #else
300 int main()
301 {
302  std::cout << "You do not have an afma6 robot connected to your computer..." << std::endl;
303  return EXIT_SUCCESS;
304 }
305 #endif
Class for firewire ieee1394 video devices using libdc1394-2.x api.
void acquire(vpImage< unsigned char > &I)
void setVideoMode(vp1394TwoVideoModeType videomode)
void setFramerate(vp1394TwoFramerateType fps)
void open(vpImage< unsigned char > &I)
Generic class defining intrinsic camera parameters.
Implementation of column vector and the associated operations.
Definition: vpColVector.h:163
static const vpColor blue
Definition: vpColor.h:217
static const vpColor green
Definition: vpColor.h:214
The vpDisplayGTK allows to display image using the GTK 3rd party library. Thus to enable this class G...
Definition: vpDisplayGTK.h:128
The vpDisplayOpenCV allows to display image using the OpenCV library. Thus to enable this class OpenC...
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
Definition: vpDisplayX.h:128
static void display(const vpImage< unsigned char > &I)
static void displayCross(const vpImage< unsigned char > &I, const vpImagePoint &ip, unsigned int size, const vpColor &color, unsigned int thickness=1)
static void flush(const vpImage< unsigned char > &I)
This tracker is meant to track a dot (connected pixels with same gray level) on a vpImage.
Definition: vpDot.h:112
void initTracking(const vpImage< unsigned char > &I)
Definition: vpDot.cpp:668
vpImagePoint getCog() const
Definition: vpDot.h:242
void track(const vpImage< unsigned char > &I)
Definition: vpDot.cpp:798
error that can be emitted by ViSP classes.
Definition: vpException.h:59
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
void buildFrom(double x, double y, double Z)
void set_Z(double Z)
Implementation of an homogeneous matrix and operations on such kind of matrices.
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:82
static bool checkDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:832
static std::string getUserName()
Definition: vpIoTools.cpp:725
static void makeDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:981
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:146
Control of Irisa's gantry robot named Afma6.
Definition: vpRobotAfma6.h:209
void get_eJe(vpMatrix &eJe) vp_override
void getVelocity(const vpRobot::vpControlFrameType frame, vpColVector &velocity)
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) vp_override
@ ARTICULAR_FRAME
Definition: vpRobot.h:78
@ STATE_VELOCITY_CONTROL
Initialize the velocity controller.
Definition: vpRobot.h:65
virtual vpRobotStateType setRobotState(const vpRobot::vpRobotStateType newState)
Definition: vpRobot.cpp:198
static void display(const vpServo &s, const vpCameraParameters &cam, const vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:378
@ EYEINHAND_L_cVe_eJe
Definition: vpServo.h:162
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:329
void set_cVe(const vpVelocityTwistMatrix &cVe_)
Definition: vpServo.h:1028
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:169
void setLambda(double c)
Definition: vpServo.h:976
void set_eJe(const vpMatrix &eJe_)
Definition: vpServo.h:1091
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:132
vpColVector getError() const
Definition: vpServo.h:504
@ PSEUDO_INVERSE
Definition: vpServo.h:229
vpColVector computeControlLaw()
Definition: vpServo.cpp:703
@ DESIRED
Definition: vpServo.h:202
vpVelocityTwistMatrix get_cVe() const
Definition: vpUnicycle.h:70
#define vpTRACE
Definition: vpDebug.h:405
void display(vpImage< unsigned char > &I, const std::string &title)
Display a gray-scale image.