Visual Servoing Platform  version 3.6.1 under development (2024-11-14)
servoAfma6Point2DArtVelocity.cpp

Example of eye-in-hand control law. We control here a real robot, the Afma6 robot (cartesian robot, with 6 degrees of freedom). The velocity is computed in articular. The visual feature is the center of gravity of a point.

/*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2024 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* tests the control law
* eye-in-hand control
* velocity computed in articular
*/
#include <iostream>
#include <visp3/core/vpConfig.h>
#if defined(VISP_HAVE_AFMA6) && defined(VISP_HAVE_REALSENSE2) && defined(VISP_HAVE_DISPLAY)
#include <visp3/core/vpImage.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/gui/vpDisplayFactory.h>
#include <visp3/sensor/vpRealSense2.h>
#include <visp3/blob/vpDot2.h>
#include <visp3/robot/vpRobotAfma6.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeaturePoint.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>
int main()
{
#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif
// Log file creation in /tmp/$USERNAME/log.dat
// This file contains by line:
// - the 6 computed joint velocities (m/s, rad/s) to achieve the task
// - the 6 measured joint velocities (m/s, rad/s)
// - the 6 measured joint positions (m, rad)
// - the 2 values of s - s*
// Get the user login name
std::string username = vpIoTools::getUserName();
// Create a log filename to save velocities...
std::string logdirname = "/tmp/" + username;
// Test if the output path exist. If no try to create it
if (vpIoTools::checkDirectory(logdirname) == false) {
try {
// Create the dirname
}
catch (...) {
std::cerr << std::endl << "ERROR:" << std::endl;
std::cerr << " Cannot create " << logdirname << std::endl;
return EXIT_FAILURE;
}
}
std::string logfilename = logdirname + "/log.dat";
// Open the log file name
std::ofstream flog(logfilename.c_str());
try {
rs2::config config;
unsigned int width = 640, height = 480, fps = 60;
config.enable_stream(RS2_STREAM_COLOR, width, height, RS2_FORMAT_RGBA8, fps);
config.enable_stream(RS2_STREAM_DEPTH, width, height, RS2_FORMAT_Z16, fps);
config.enable_stream(RS2_STREAM_INFRARED, width, height, RS2_FORMAT_Y8, fps);
rs.open(config);
// Warm up camera
for (size_t i = 0; i < 10; ++i) {
rs.acquire(I);
}
std::shared_ptr<vpDisplay> d = vpDisplayFactory::createDisplay(I, 100, 100, "Current image");
std::cout << "-------------------------------------------------------" << std::endl;
std::cout << " Test program for vpServo " << std::endl;
std::cout << " Eye-in-hand task control, velocity computed in the joint space" << std::endl;
std::cout << " Use of the Afma6 robot " << std::endl;
std::cout << " task : servo a point " << std::endl;
std::cout << "-------------------------------------------------------" << std::endl;
vpDot dot;
dot.setGraphics(true);
std::cout << "Click on a dot..." << std::endl;
dot.initTracking(I);
// Get the dot cog
vpImagePoint cog = dot.getCog();
vpRobotAfma6 robot;
// Get camera intrinsics
robot.getCameraParameters(cam, I);
// Sets the current position of the visual feature
// Update visual feature from camera parameters and blob center of gravity
// Sets the desired position of the visual feature
s_d.buildFrom(0, 0, 1); // Here we consider the center of the image (x=y=0 and Z=1 meter)
// Define the task
// - we want an eye-in-hand control law
// - joint velocities are computed
vpServo task;
// - set the camera to end-effector velocity twist matrix transformation
robot.get_cVe(c_V_e);
task.set_cVe(c_V_e);
// - set the Jacobian (expressed in the end-effector frame)
vpMatrix e_J_e;
robot.get_eJe(e_J_e);
task.set_eJe(e_J_e);
// - we want to see a point on a point
task.addFeature(s, s_d);
// - set the gain
task.setLambda(0.4);
// Display task information
task.print();
std::cout << "\nHit CTRL-C to stop the loop...\n" << std::flush;
bool quit = false;
while (!quit) {
// Acquire a new image from the camera
rs.acquire(I);
// Display this image
// Achieve the tracking of the dot in the image
dot.track(I);
// Update the point feature from the dot location
// Get the Jacobian of the robot
robot.get_eJe(e_J_e);
// Update this jacobian in the task structure. It will be used to
task.set_eJe(e_J_e);
// Compute the visual servoing skew vector (as a joint velocity)
// qdot = -lambda * L^+ * cVe * eJe * (s-s*)
// Display the current and desired feature points in the image display
vpServoDisplay::display(task, cam, I);
// Apply the computed joint velocities to the robot
// Save velocities applied to the robot in the log file
// qdot[0], qdot[1], qdot[2] correspond to joint translation velocities in m/s
// qdot[3], qdot[4], qdot[5] correspond to joint rotation velocities in rad/s
flog << qdot[0] << " " << qdot[1] << " " << qdot[2] << " " << qdot[3] << " " << qdot[4] << " " << qdot[5] << " ";
// Get the measured joint velocities of the robot
vpColVector qdot_mes;
// Save measured joint velocities of the robot in the log file:
// - qdot_mes[0], qdot_mes[1], qdot_mes[2] correspond to measured joint translation velocities in m/s
// - qdot_mes[3], qdot_mes[4], qdot_mes[5] correspond to measured joint rotation velocities in rad/s
flog << qdot_mes[0] << " " << qdot_mes[1] << " " << qdot_mes[2] << " " << qdot_mes[3] << " " << qdot_mes[4] << " " << qdot_mes[5] << " ";
// Get the measured joint positions of the robot
robot.getPosition(vpRobot::JOINT_STATE, q);
// Save measured joint positions of the robot in the log file
// - q[0], q[1], q[2] correspond to measured joint translation
// positions in m
// - q[3], q[4], q[5] correspond to measured joint rotation
// positions in rad
flog << q[0] << " " << q[1] << " " << q[2] << " " << q[3] << " " << q[4] << " " << q[5] << " ";
// Save feature error (s-s*) for the 4 feature points. For each feature
// point, we have 2 errors (along x and y axis). This error is
// expressed in meters in the camera frame
flog << (task.getError()).t() << std::endl;
vpDisplay::displayText(I, 20, 20, "Click to quit...", vpColor::red);
if (vpDisplay::getClick(I, false)) {
quit = true;
}
// Flush the display
}
// Close the log file
flog.close();
// Display task information
task.print();
return EXIT_SUCCESS;
}
catch (const vpException &e) {
// Close the log file
flog.close();
std::cout << "Visual servo failed with exception: " << e << std::endl;
return EXIT_FAILURE;
}
}
#else
int main()
{
std::cout << "You do not have an afma6 robot connected to your computer..." << std::endl;
return EXIT_SUCCESS;
}
#endif
@ TOOL_INTEL_D435_CAMERA
Definition: vpAfma6.h:131
Generic class defining intrinsic camera parameters.
@ perspectiveProjWithoutDistortion
Perspective projection without distortion model.
Implementation of column vector and the associated operations.
Definition: vpColVector.h:191
static const vpColor red
Definition: vpColor.h:217
static const vpColor blue
Definition: vpColor.h:223
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
static void display(const vpImage< unsigned char > &I)
static void displayCross(const vpImage< unsigned char > &I, const vpImagePoint &ip, unsigned int size, const vpColor &color, unsigned int thickness=1)
static void flush(const vpImage< unsigned char > &I)
static void displayText(const vpImage< unsigned char > &I, const vpImagePoint &ip, const std::string &s, const vpColor &color)
This tracker is meant to track a dot (connected pixels with same gray level) on a vpImage.
Definition: vpDot.h:116
void initTracking(const vpImage< unsigned char > &I)
Definition: vpDot.cpp:630
void setGraphics(bool activate)
Definition: vpDot.h:354
vpImagePoint getCog() const
Definition: vpDot.h:247
void track(const vpImage< unsigned char > &I)
Definition: vpDot.cpp:760
error that can be emitted by ViSP classes.
Definition: vpException.h:60
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpImagePoint &t)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
vpFeaturePoint & buildFrom(const double &x, const double &y, const double &Z)
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:82
static bool checkDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:396
static std::string getUserName()
Definition: vpIoTools.cpp:285
static void makeDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:550
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:169
void acquire(vpImage< unsigned char > &grey, double *ts=nullptr)
bool open(const rs2::config &cfg=rs2::config())
Control of Irisa's gantry robot named Afma6.
Definition: vpRobotAfma6.h:212
void get_eJe(vpMatrix &eJe) VP_OVERRIDE
void getVelocity(const vpRobot::vpControlFrameType frame, vpColVector &velocity)
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) VP_OVERRIDE
@ JOINT_STATE
Definition: vpRobot.h:82
@ STATE_VELOCITY_CONTROL
Initialize the velocity controller.
Definition: vpRobot.h:67
virtual vpRobotStateType setRobotState(const vpRobot::vpRobotStateType newState)
Definition: vpRobot.cpp:202
static void display(const vpServo &s, const vpCameraParameters &cam, const vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:380
@ EYEINHAND_L_cVe_eJe
Definition: vpServo.h:168
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:331
void set_cVe(const vpVelocityTwistMatrix &cVe_)
Definition: vpServo.h:1038
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:171
void setLambda(double c)
Definition: vpServo.h:986
void set_eJe(const vpMatrix &eJe_)
Definition: vpServo.h:1101
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:134
vpColVector getError() const
Definition: vpServo.h:510
@ PSEUDO_INVERSE
Definition: vpServo.h:235
vpColVector computeControlLaw()
Definition: vpServo.cpp:705
@ DESIRED
Definition: vpServo.h:208
vpVelocityTwistMatrix get_cVe() const
Definition: vpUnicycle.h:72
std::shared_ptr< vpDisplay > createDisplay()
Return a smart pointer vpDisplay specialization if a GUI library is available or nullptr otherwise.