Example of eye-in-hand control law. We control here a real robot, the Afma6 robot (cartesian robot, with 6 degrees of freedom). The velocity is computed in articular. The visual feature is the center of gravity of a point.
#include <iostream>
#include <visp3/core/vpConfig.h>
#if defined(VISP_HAVE_AFMA6) && defined(VISP_HAVE_REALSENSE2) && defined(VISP_HAVE_DISPLAY)
#include <visp3/core/vpImage.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/gui/vpDisplayFactory.h>
#include <visp3/sensor/vpRealSense2.h>
#include <visp3/blob/vpDot2.h>
#include <visp3/robot/vpRobotAfma6.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeaturePoint.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>
int main()
{
#ifdef ENABLE_VISP_NAMESPACE
#endif
std::string logdirname = "/tmp/" + username;
try {
}
catch (...) {
std::cerr << std::endl << "ERROR:" << std::endl;
std::cerr << " Cannot create " << logdirname << std::endl;
return EXIT_FAILURE;
}
}
std::string logfilename = logdirname + "/log.dat";
std::ofstream flog(logfilename.c_str());
try {
rs2::config config;
unsigned int width = 640, height = 480, fps = 60;
config.enable_stream(RS2_STREAM_COLOR, width, height, RS2_FORMAT_RGBA8, fps);
config.enable_stream(RS2_STREAM_DEPTH, width, height, RS2_FORMAT_Z16, fps);
config.enable_stream(RS2_STREAM_INFRARED, width, height, RS2_FORMAT_Y8, fps);
for (size_t i = 0; i < 10; ++i) {
}
std::cout << "-------------------------------------------------------" << std::endl;
std::cout << " Test program for vpServo " << std::endl;
std::cout << " Eye-in-hand task control, velocity computed in the joint space" << std::endl;
std::cout << " Use of the Afma6 robot " << std::endl;
std::cout << " task : servo a point " << std::endl;
std::cout << "-------------------------------------------------------" << std::endl;
std::cout << "Click on a dot..." << std::endl;
robot.getCameraParameters(cam, I);
std::cout << "\nHit CTRL-C to stop the loop...\n" << std::flush;
bool quit = false;
while (!quit) {
flog << qdot[0] << " " << qdot[1] << " " << qdot[2] << " " << qdot[3] << " " << qdot[4] << " " << qdot[5] << " ";
flog << qdot_mes[0] << " " << qdot_mes[1] << " " << qdot_mes[2] << " " << qdot_mes[3] << " " << qdot_mes[4] << " " << qdot_mes[5] << " ";
flog << q[0] << " " << q[1] << " " << q[2] << " " << q[3] << " " << q[4] << " " << q[5] << " ";
flog << (task.
getError()).t() << std::endl;
quit = true;
}
}
flog.close();
return EXIT_SUCCESS;
}
flog.close();
std::cout << "Visual servo failed with exception: " << e << std::endl;
return EXIT_FAILURE;
}
}
#else
int main()
{
std::cout << "You do not have an afma6 robot connected to your computer..." << std::endl;
return EXIT_SUCCESS;
}
#endif
Generic class defining intrinsic camera parameters.
@ perspectiveProjWithoutDistortion
Perspective projection without distortion model.
Implementation of column vector and the associated operations.
static const vpColor blue
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
static void display(const vpImage< unsigned char > &I)
static void displayCross(const vpImage< unsigned char > &I, const vpImagePoint &ip, unsigned int size, const vpColor &color, unsigned int thickness=1)
static void flush(const vpImage< unsigned char > &I)
static void displayText(const vpImage< unsigned char > &I, const vpImagePoint &ip, const std::string &s, const vpColor &color)
This tracker is meant to track a dot (connected pixels with same gray level) on a vpImage.
void initTracking(const vpImage< unsigned char > &I)
void setGraphics(bool activate)
vpImagePoint getCog() const
void track(const vpImage< unsigned char > &I)
error that can be emitted by ViSP classes.
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpImagePoint &t)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
vpFeaturePoint & buildFrom(const double &x, const double &y, const double &Z)
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Implementation of a matrix and operations on matrices.
void acquire(vpImage< unsigned char > &grey, double *ts=nullptr)
bool open(const rs2::config &cfg=rs2::config())
Control of Irisa's gantry robot named Afma6.
void get_eJe(vpMatrix &eJe) VP_OVERRIDE
void getVelocity(const vpRobot::vpControlFrameType frame, vpColVector &velocity)
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) VP_OVERRIDE
@ STATE_VELOCITY_CONTROL
Initialize the velocity controller.
virtual vpRobotStateType setRobotState(const vpRobot::vpRobotStateType newState)
static void display(const vpServo &s, const vpCameraParameters &cam, const vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
void set_cVe(const vpVelocityTwistMatrix &cVe_)
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
void set_eJe(const vpMatrix &eJe_)
void setServo(const vpServoType &servo_type)
vpColVector getError() const
vpColVector computeControlLaw()
vpVelocityTwistMatrix get_cVe() const
std::shared_ptr< vpDisplay > createDisplay()
Return a smart pointer vpDisplay specialization if a GUI library is available or nullptr otherwise.