Visual Servoing Platform  version 3.6.1 under development (2024-09-07)
photometricMappingVisualServoing.cpp

Implemented from [7], [35] and [36].

/*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2024 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
#include <visp3/core/vpImage.h>
#include <visp3/core/vpImageTools.h>
#include <visp3/core/vpCameraParameters.h>
#include <visp3/core/vpTime.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpMath.h>
#include <visp3/core/vpUniRand.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/robot/vpSimulatorCamera.h>
#include <visp3/robot/vpImageSimulator.h>
#include <visp3/io/vpImageIo.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/gui/vpDisplayD3D.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayGTK.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/visual_features/vpFeatureLuminanceMapping.h>
#include <stdlib.h>
#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif
// List of allowed command line options
#define GETOPTARGS "cdi:n:p:m:k:hl:"
void usage(const char *name, const char *badparam, std::string ipath, int niter, const std::string &method, unsigned numDbImages, const unsigned numComponents, const double lambda);
bool getOptions(int argc, const char **argv, std::string &ipath, bool &click_allowed, bool &display, int &niter, std::string &method, unsigned &numDbImages, unsigned &numComponents, double &lambda);
void usage(const char *name, const char *badparam, std::string ipath, int niter, const std::string &method, unsigned numDbImages, const unsigned numComponents, const double lambda)
{
fprintf(stdout, "\n\
Visual servoing with compressed photometric features.\n\
Use either PCA or DCT representations\n\
\n\
\n\
SYNOPSIS\n\
%s [-i <input image path>] [-m pca|dct] [-p <v>] [-c] [-d] [-n <number of iterations>] [-h]\n",
name);
fprintf(stdout, "\n\
OPTIONS: Default\n\
-i <input image path> %s\n\
Set image input path.\n\
From this path read \"doisneau/doisneau.jpg\"\n\
images. \n\
Setting the VISP_INPUT_IMAGE_PATH environment\n\
variable produces the same behaviour than using\n\
this option.\n\
\n\
-m\n\
Method to use: either 'PCA' or 'DCT'\n\
PCA first requires learning a projection from a base of images. see the -p option.\n\
Default: %s\n\
-k\n\
Number of visual servoing features (i.e., PCA or DCT components)\n\
Default: %d\n\
\n\
-p\n\
Number of images to use to compute PCA. If method is DCT, this option is ignored.\n\
Default: %d\n\
\n\
-c\n\
Disable the mouse click. Useful to automate the \n\
execution of this program without human intervention.\n\
\n\
-d \n\
Turn off the display.\n\
\n\
-n %%d %d\n\
Number of visual servoing iterations.\n\
\n\
-l %%f %f\n\
Number of visual servoing iterations.\n\
\n\
-h\n\
Print the help.\n",
ipath.c_str(), method.c_str(), numComponents, numDbImages, niter, lambda);
if (badparam)
fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
bool getOptions(int argc, const char **argv, std::string &ipath, bool &click_allowed, bool &display,
int &niter, std::string &method, unsigned &numDbImages, unsigned &numComponents, double &lambda)
{
const char *optarg_;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
switch (c) {
case 'c':
click_allowed = false;
break;
case 'd':
display = false;
break;
case 'i':
ipath = optarg_;
break;
case 'm':
method = std::string(optarg_);
break;
case 'p':
numDbImages = atoi(optarg_);
break;
case 'k':
numComponents = atoi(optarg_);
break;
case 'n':
niter = atoi(optarg_);
break;
case 'l':
lambda = atof(optarg_);
break;
case 'h':
usage(argv[0], nullptr, ipath, niter, method, numDbImages, numComponents, lambda);
return false;
default:
usage(argv[0], optarg_, ipath, niter, method, numDbImages, numComponents, lambda);
return false;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], nullptr, ipath, niter, method, numDbImages, numComponents, lambda);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
return false;
}
return true;
}
int main(int argc, const char **argv)
{
#if (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV)) && (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11)
try {
std::string env_ipath;
std::string opt_ipath;
std::string ipath;
std::string filename;
bool opt_click_allowed = true;
bool opt_display = true;
int opt_niter = 400;
std::string opt_method = "dct";
unsigned opt_numDbImages = 2000;
unsigned opt_numComponents = 32;
double opt_lambda = 5.0;
double mu = 0.01; // mu = 0 : Gauss Newton ; mu != 0 : LM
double lambdaGN = opt_lambda;
const double Z = 0.8;
const unsigned ih = 240;
const unsigned iw = 320;
const double scenew = 0.6;
const double sceneh = 0.42;
// Get the visp-images-data package path or VISP_INPUT_IMAGE_PATH
// environment variable value
// Set the default input path
if (!env_ipath.empty())
ipath = env_ipath;
// Read the command line options
if (getOptions(argc, argv, opt_ipath, opt_click_allowed, opt_display, opt_niter, opt_method,
opt_numDbImages, opt_numComponents, opt_lambda) == false) {
return EXIT_FAILURE;
}
// Get the option values
if (!opt_ipath.empty())
ipath = opt_ipath;
// Compare ipath and env_ipath. If they differ, we take into account
// the input path coming from the command line option
if (!opt_ipath.empty() && !env_ipath.empty()) {
if (ipath != env_ipath) {
std::cout << std::endl << "WARNING: " << std::endl;
std::cout << " Since -i <visp image path=" << ipath << "> "
<< " is different from VISP_IMAGE_PATH=" << env_ipath << std::endl
<< " we skip the environment variable." << std::endl;
}
}
// Test if an input path is set
if (opt_ipath.empty() && env_ipath.empty()) {
usage(argv[0], nullptr, ipath, opt_niter, opt_method, opt_numDbImages, opt_numComponents, opt_lambda);
std::cerr << std::endl << "ERROR:" << std::endl;
std::cerr << " Use -i <visp image path> option or set VISP_INPUT_IMAGE_PATH " << std::endl
<< " environment variable to specify the location of the " << std::endl
<< " image path where test images are located." << std::endl
<< std::endl;
return EXIT_FAILURE;
}
filename = vpIoTools::createFilePath(ipath, "Klimt/Klimt.pgm");
vpImageIo::read(Itexture, filename);
for (int i = 0; i < 4; i++)
X[i].resize(3);
// Top left corner
X[0][0] = -(scenew / 2.0);
X[0][1] = -(sceneh / 2.0);
X[0][2] = 0;
// Top right corner
X[1][0] = (scenew / 2.0);
X[1][1] = -(sceneh / 2.0);
X[1][2] = 0;
// Bottom right corner
X[2][0] = (scenew / 2.0);
X[2][1] = (sceneh / 2.0);
X[2][2] = 0;
// Bottom left corner
X[3][0] = -(scenew / 2.0);
X[3][1] = (sceneh / 2.0);
X[3][2] = 0;
sim.init(Itexture, X);
// ----------------------------------------------------------
// Create the framegraber (here a simulated image)
vpImage<unsigned char> I(ih, iw, 0);
// camera desired position
cdMo[2][3] = Z;
vpCameraParameters cam(870, 870, 160, 120);
std::shared_ptr<vpLuminanceMapping> sMapping = nullptr;
std::shared_ptr<vpLuminanceMapping> sdMapping = nullptr;
// Setup mapping
if (opt_method == "pca") {
vpUniRand random(17);
std::cout << "Building image database for PCA computation with " << opt_numDbImages << " images" << std::endl;
#if defined(VISP_HAVE_GUI)
#if defined(VISP_HAVE_X11)
#elif defined(VISP_HAVE_GDI)
#elif defined(VISP_HAVE_GTK)
#elif defined(HAVE_OPENCV_HIGHGUI)
#endif
if (opt_display) {
d.init(I, 0, 0, "Image database (subsample)");
}
#endif
std::vector<vpImage<unsigned char>> images(opt_numDbImages);
for (unsigned i = 0; i < opt_numDbImages; ++i) {
vpColVector to(3, 0.0), positionNoise(3, 0.0);
const double noiseDiv = 16.0;
positionNoise[0] = random.uniform(-scenew / noiseDiv, scenew / noiseDiv);
positionNoise[1] = random.uniform(-sceneh / noiseDiv, sceneh / noiseDiv);
positionNoise[2] = random.uniform(0.0, Z / noiseDiv);
const double noiseDivTo = 16.0;
to[0] = random.uniform(-scenew / noiseDivTo, scenew / noiseDivTo);
to[1] = random.uniform(-sceneh / noiseDivTo, sceneh / noiseDivTo);
const vpColVector from = vpColVector(cdMo.getTranslationVector()) + positionNoise;
vpRotationMatrix Rrot(0.0, 0.0, vpMath::rad(random.uniform(-10, 10)));
vpHomogeneousMatrix dbMo = vpMath::lookAt(from, to, Rrot * vpColVector({ 0.0, 1.0, 0.0 }));
sim.setCameraPosition(dbMo);
sim.getImage(I, cam);
images[i] = I;
if (i % 20 == 0 && opt_display) {
}
}
std::cout << "Computing PCA, this may take some time!" << std::endl;
// create two distinct objects: if the projection is stateful, using a single mapping could lead to undesired behaviour
std::cout << "Explained variance: " << pca.getExplainedVariance().sum() * 100.0 << "%" << std::endl;
sMapping = std::shared_ptr<vpLuminanceMapping>(new vpLuminancePCA(pca));
sdMapping = std::shared_ptr<vpLuminanceMapping>(new vpLuminancePCA(pca));
}
else if (opt_method == "dct") {
sMapping = std::shared_ptr<vpLuminanceMapping>(new vpLuminanceDCT(opt_numComponents));
sdMapping = std::shared_ptr<vpLuminanceMapping>(new vpLuminanceDCT(opt_numComponents));
}
else {
throw vpException(vpException::badValue, "Method must be pca or dct!");
}
// set the robot at the desired position
sim.setCameraPosition(cdMo);
sim.getImage(I, cam); // and aquire the image Id
Id = I;
#if defined(VISP_HAVE_GUI)
// display the image
#if defined(VISP_HAVE_X11)
#elif defined(VISP_HAVE_GDI)
#elif defined(VISP_HAVE_GTK)
#elif defined(HAVE_OPENCV_HIGHGUI)
#endif
#if defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_GTK) || defined(VISP_HAVE_OPENCV)
if (opt_display) {
d.init(I, 20, 10, "Current image");
}
if (opt_display && opt_click_allowed) {
std::cout << "Click in the image to continue..." << std::endl;
}
#endif
#endif
// ----------------------------------------------------------
// position the robot at the initial position
// ----------------------------------------------------------
// camera desired position
cMo.build(0.0, 0, Z + 0.2, vpMath::rad(15), vpMath::rad(-5), vpMath::rad(5));
vpHomogeneousMatrix wMo; // Set to identity
vpHomogeneousMatrix wMc; // Camera position in the world frame
// set the robot at the desired position
I = 0u;
sim.getImage(I, cam); // and aquire the image Id
#if defined(VISP_HAVE_GUI) && (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_GTK))
if (opt_display) {
}
if (opt_display && opt_click_allowed) {
std::cout << "Click in the image to continue..." << std::endl;
}
#endif
Idiff = I;
// Display image difference
#if defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_GTK)
#if defined(VISP_HAVE_X11)
vpDisplayX d1, d2;
#elif defined(VISP_HAVE_GDI)
vpDisplayGDI d1, d2;
#elif defined(VISP_HAVE_GTK)
vpDisplayGTK d1, d2;
#endif
if (opt_display) {
d1.init(Idiff, 40 + static_cast<int>(I.getWidth()), 10, "photometric visual servoing : s-s* ");
d2.init(Irec, 40 + static_cast<int>(I.getWidth()) * 2, 10, "Reconstructed image");
}
#endif
// create the robot (here a simulated free flying camera)
robot.setSamplingTime(0.04);
wMc = wMo * cMo.inverse();
robot.setPosition(wMc);
// ------------------------------------------------------
// Visual feature, interaction matrix, error
// s, Ls, Lsd, Lt, Lp, etc
// ------------------------------------------------------
// current visual feature built from the image
vpFeatureLuminance luminanceI;
luminanceI.init(I.getHeight(), I.getWidth(), Z);
luminanceI.setCameraParameters(cam);
vpFeatureLuminanceMapping sI(luminanceI, sMapping);
sI.build(I);
sI.getMapping()->inverse(sI.get_s(), Irec);
// desired visual feature built from the image
vpFeatureLuminance luminanceId;
luminanceId.init(I.getHeight(), I.getWidth(), Z);
luminanceId.setCameraParameters(cam);
vpFeatureLuminanceMapping sId(luminanceId, sdMapping);
sId.build(Id);
// set a velocity control mode
int iter = 1;
int iterGN = opt_niter / 8;
double normError = 0;
vpColVector v; // camera velocity sent to the robot
vpColVector error(sI.dimension_s(), 0);
unsigned int n = 6;
vpMatrix Hs(n, n);
vpMatrix diagHs(n, n);
vpChrono chrono;
chrono.start();
std::cout << "Starting VS loop" << std::endl;
do {
std::cout << "--------------------------------------------" << iter++ << std::endl;
// Acquire the new image
sim.getImage(I, cam);
// Compute current visual features
sI.build(I);
sI.getMapping()->inverse(sI.get_s(), Irec);
if (iter > iterGN) {
mu = 0.0001;
opt_lambda = lambdaGN;
}
sI.interaction(L);
sI.error(sId, error);
Hs = L.AtA();
for (unsigned int i = 0; i < n; i++) {
diagHs[i][i] = Hs[i][i];
}
H = ((mu * diagHs) + Hs).inverseByLU();
// Compute the control law
v = -opt_lambda * H * L.t() * error;
normError = error.sumSquare();
std::cout << " |e| = " << normError << std::endl;
std::cout << " |v| = " << sqrt(v.sumSquare()) << std::endl;
#if defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_GTK)
if (opt_display) {
}
#endif
// send the robot velocity
wMc = robot.getPosition();
cMo = wMc.inverse() * wMo;
} while (normError > 200 && iter < opt_niter);
chrono.stop();
std::cout << "Time to convergence: " << chrono.getDurationMs() << " ms" << std::endl;
v = 0;
if (normError > 200) {
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
catch (const vpException &e) {
std::cout << "Catch an exception: " << e << std::endl;
return EXIT_FAILURE;
}
#else
(void)argc;
(void)argv;
std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
return EXIT_SUCCESS;
#endif
}
Generic class defining intrinsic camera parameters.
void start(bool reset=true)
Definition: vpTime.cpp:401
void stop()
Definition: vpTime.cpp:416
double getDurationMs()
Definition: vpTime.cpp:390
Implementation of column vector and the associated operations.
Definition: vpColVector.h:191
double sumSquare() const
double sum() const
static const vpColor black
Definition: vpColor.h:211
Display for windows using GDI (available on any windows 32 platform).
Definition: vpDisplayGDI.h:130
The vpDisplayGTK allows to display image using the GTK 3rd party library. Thus to enable this class G...
Definition: vpDisplayGTK.h:133
The vpDisplayOpenCV allows to display image using the OpenCV library. Thus to enable this class OpenC...
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
Definition: vpDisplayX.h:135
void init(vpImage< unsigned char > &I, int win_x=-1, int win_y=-1, const std::string &win_title="") VP_OVERRIDE
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
static void display(const vpImage< unsigned char > &I)
static void flush(const vpImage< unsigned char > &I)
error that can be emitted by ViSP classes.
Definition: vpException.h:60
@ badValue
Used to indicate that a value is not in the allowed range.
Definition: vpException.h:73
Class to combine luminance features (photometric servoing)
Class that defines the image luminance visual feature.
void init(unsigned int _nbr, unsigned int _nbc, double _Z)
static const int DEFAULT_BORDER
void setCameraParameters(const vpCameraParameters &_cam)
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix & build(const vpTranslationVector &t, const vpRotationMatrix &R)
vpHomogeneousMatrix inverse() const
vpTranslationVector getTranslationVector() const
static void read(vpImage< unsigned char > &I, const std::string &filename, int backend=IO_DEFAULT_BACKEND)
Definition: vpImageIo.cpp:147
Class which enables to project an image in the 3D space and get the view of a virtual camera.
void getImage(vpImage< unsigned char > &I, const vpCameraParameters &cam)
void init(const vpImage< unsigned char > &I, vpColVector *X)
void setCleanPreviousImage(const bool &clean, const vpColor &color=vpColor::white)
void setInterpolationType(const vpInterpolationType interplt)
void setCameraPosition(const vpHomogeneousMatrix &cMt)
static void imageDifference(const vpImage< unsigned char > &I1, const vpImage< unsigned char > &I2, vpImage< unsigned char > &Idiff)
unsigned int getWidth() const
Definition: vpImage.h:242
unsigned int getHeight() const
Definition: vpImage.h:181
static std::string getViSPImagesDataPath()
Definition: vpIoTools.cpp:1053
static std::string createFilePath(const std::string &parent, const std::string &child)
Definition: vpIoTools.cpp:1427
Implementation of .
Implementation of .
static vpLuminancePCA learn(const std::vector< std::string > &imageFiles, const unsigned int projectionSize, const unsigned int imageBorder=0)
Compute a new Principal Component Analysis on set of images, stored on disk.
vpColVector getExplainedVariance() const
Get the values of explained variance by each of the eigen vectors.
static double rad(double deg)
Definition: vpMath.h:129
static vpHomogeneousMatrix lookAt(const vpColVector &from, const vpColVector &to, vpColVector tmp)
Definition: vpMath.cpp:677
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:169
vpMatrix inverseByLU() const
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:70
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) VP_OVERRIDE
@ CAMERA_FRAME
Definition: vpRobot.h:84
@ STATE_VELOCITY_CONTROL
Initialize the velocity controller.
Definition: vpRobot.h:67
virtual vpRobotStateType setRobotState(const vpRobot::vpRobotStateType newState)
Definition: vpRobot.cpp:202
Implementation of a rotation matrix and operations on such kind of matrices.
Class that defines the simplest robot: a free flying camera.
Class for generating random numbers with uniform probability density.
Definition: vpUniRand.h:125