Visual Servoing Platform  version 3.6.1 under development (2024-11-14)
photometricMappingVisualServoing.cpp

Implemented from [7], [35] and [36].

/*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2024 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
#include <visp3/core/vpImage.h>
#include <visp3/core/vpImageTools.h>
#include <visp3/core/vpCameraParameters.h>
#include <visp3/core/vpTime.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpMath.h>
#include <visp3/core/vpUniRand.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/robot/vpSimulatorCamera.h>
#include <visp3/robot/vpImageSimulator.h>
#include <visp3/io/vpImageIo.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/gui/vpDisplayD3D.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayGTK.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/visual_features/vpFeatureLuminanceMapping.h>
#include <stdlib.h>
#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif
// List of allowed command line options
#define GETOPTARGS "cdi:n:p:m:k:hl:"
void usage(const char *name, const char *badparam, std::string ipath, int niter, const std::string &method, unsigned numDbImages, const unsigned numComponents, const double lambda);
bool getOptions(int argc, const char **argv, std::string &ipath, bool &click_allowed, bool &display, int &niter, std::string &method, unsigned &numDbImages, unsigned &numComponents, double &lambda);
void usage(const char *name, const char *badparam, std::string ipath, int niter, const std::string &method, unsigned numDbImages, const unsigned numComponents, const double lambda)
{
fprintf(stdout, "\n\
Visual servoing with compressed photometric features.\n\
Use either PCA or DCT representations\n\
\n\
\n\
SYNOPSIS\n\
%s [-i <input image path>] [-m pca|dct] [-p <v>] [-c] [-d] [-n <number of iterations>] [-h]\n",
name);
fprintf(stdout, "\n\
OPTIONS: Default\n\
-i <input image path> %s\n\
Set image input path.\n\
From this path read \"doisneau/doisneau.jpg\"\n\
images. \n\
Setting the VISP_INPUT_IMAGE_PATH environment\n\
variable produces the same behaviour than using\n\
this option.\n\
\n\
-m\n\
Method to use: either 'PCA' or 'DCT'\n\
PCA first requires learning a projection from a base of images. see the -p option.\n\
Default: %s\n\
-k\n\
Number of visual servoing features (i.e., PCA or DCT components)\n\
Default: %d\n\
\n\
-p\n\
Number of images to use to compute PCA. If method is DCT, this option is ignored.\n\
Default: %d\n\
\n\
-c\n\
Disable the mouse click. Useful to automate the \n\
execution of this program without human intervention.\n\
\n\
-d \n\
Turn off the display.\n\
\n\
-n %%d %d\n\
Number of visual servoing iterations.\n\
\n\
-l %%f %f\n\
Number of visual servoing iterations.\n\
\n\
-h\n\
Print the help.\n",
ipath.c_str(), method.c_str(), numComponents, numDbImages, niter, lambda);
if (badparam)
fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
bool getOptions(int argc, const char **argv, std::string &ipath, bool &click_allowed, bool &display,
int &niter, std::string &method, unsigned &numDbImages, unsigned &numComponents, double &lambda)
{
const char *optarg_;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
switch (c) {
case 'c':
click_allowed = false;
break;
case 'd':
display = false;
break;
case 'i':
ipath = optarg_;
break;
case 'm':
method = std::string(optarg_);
break;
case 'p':
numDbImages = atoi(optarg_);
break;
case 'k':
numComponents = atoi(optarg_);
break;
case 'n':
niter = atoi(optarg_);
break;
case 'l':
lambda = atof(optarg_);
break;
case 'h':
usage(argv[0], nullptr, ipath, niter, method, numDbImages, numComponents, lambda);
return false;
default:
usage(argv[0], optarg_, ipath, niter, method, numDbImages, numComponents, lambda);
return false;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], nullptr, ipath, niter, method, numDbImages, numComponents, lambda);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
return false;
}
return true;
}
int main(int argc, const char **argv)
{
#if (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV)) && (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11)
try {
std::string env_ipath;
std::string opt_ipath;
std::string ipath;
std::string filename;
bool opt_click_allowed = true;
bool opt_display = true;
int opt_niter = 400;
std::string opt_method = "dct";
unsigned opt_numDbImages = 2000;
unsigned opt_numComponents = 32;
double opt_lambda = 5.0;
double mu = 0.01; // mu = 0 : Gauss Newton ; mu != 0 : LM
double lambdaGN = opt_lambda;
const double Z = 0.8;
const unsigned ih = 240;
const unsigned iw = 320;
const double scenew = 0.6;
const double sceneh = 0.42;
// Get the visp-images-data package path or VISP_INPUT_IMAGE_PATH
// environment variable value
// Set the default input path
if (!env_ipath.empty())
ipath = env_ipath;
// Read the command line options
if (getOptions(argc, argv, opt_ipath, opt_click_allowed, opt_display, opt_niter, opt_method,
opt_numDbImages, opt_numComponents, opt_lambda) == false) {
return EXIT_FAILURE;
}
// Get the option values
if (!opt_ipath.empty())
ipath = opt_ipath;
// Compare ipath and env_ipath. If they differ, we take into account
// the input path coming from the command line option
if (!opt_ipath.empty() && !env_ipath.empty()) {
if (ipath != env_ipath) {
std::cout << std::endl << "WARNING: " << std::endl;
std::cout << " Since -i <visp image path=" << ipath << "> "
<< " is different from VISP_IMAGE_PATH=" << env_ipath << std::endl
<< " we skip the environment variable." << std::endl;
}
}
// Test if an input path is set
if (opt_ipath.empty() && env_ipath.empty()) {
usage(argv[0], nullptr, ipath, opt_niter, opt_method, opt_numDbImages, opt_numComponents, opt_lambda);
std::cerr << std::endl << "ERROR:" << std::endl;
std::cerr << " Use -i <visp image path> option or set VISP_INPUT_IMAGE_PATH " << std::endl
<< " environment variable to specify the location of the " << std::endl
<< " image path where test images are located." << std::endl
<< std::endl;
return EXIT_FAILURE;
}
filename = vpIoTools::createFilePath(ipath, "Klimt/Klimt.pgm");
vpImageIo::read(Itexture, filename);
for (int i = 0; i < 4; i++)
X[i].resize(3);
// Top left corner
X[0][0] = -(scenew / 2.0);
X[0][1] = -(sceneh / 2.0);
X[0][2] = 0;
// Top right corner
X[1][0] = (scenew / 2.0);
X[1][1] = -(sceneh / 2.0);
X[1][2] = 0;
// Bottom right corner
X[2][0] = (scenew / 2.0);
X[2][1] = (sceneh / 2.0);
X[2][2] = 0;
// Bottom left corner
X[3][0] = -(scenew / 2.0);
X[3][1] = (sceneh / 2.0);
X[3][2] = 0;
sim.init(Itexture, X);
// ----------------------------------------------------------
// Create the framegraber (here a simulated image)
vpImage<unsigned char> I(ih, iw, 0);
// camera desired position
cdMo[2][3] = Z;
vpCameraParameters cam(870, 870, 160, 120);
std::shared_ptr<vpLuminanceMapping> sMapping = nullptr;
std::shared_ptr<vpLuminanceMapping> sdMapping = nullptr;
// Setup mapping
if (opt_method == "pca") {
vpUniRand random(17);
std::cout << "Building image database for PCA computation with " << opt_numDbImages << " images" << std::endl;
#if defined(VISP_HAVE_GUI)
#if defined(VISP_HAVE_X11)
vpDisplayX d;
#elif defined(VISP_HAVE_GDI)
#elif defined(VISP_HAVE_GTK)
#elif defined(HAVE_OPENCV_HIGHGUI)
#endif
if (opt_display) {
d.init(I, 0, 0, "Image database (subsample)");
}
#endif
std::vector<vpImage<unsigned char>> images(opt_numDbImages);
for (unsigned i = 0; i < opt_numDbImages; ++i) {
vpColVector to(3, 0.0), positionNoise(3, 0.0);
const double noiseDiv = 16.0;
positionNoise[0] = random.uniform(-scenew / noiseDiv, scenew / noiseDiv);
positionNoise[1] = random.uniform(-sceneh / noiseDiv, sceneh / noiseDiv);
positionNoise[2] = random.uniform(0.0, Z / noiseDiv);
const double noiseDivTo = 16.0;
to[0] = random.uniform(-scenew / noiseDivTo, scenew / noiseDivTo);
to[1] = random.uniform(-sceneh / noiseDivTo, sceneh / noiseDivTo);
const vpColVector from = vpColVector(cdMo.getTranslationVector()) + positionNoise;
vpRotationMatrix Rrot(0.0, 0.0, vpMath::rad(random.uniform(-10, 10)));
vpHomogeneousMatrix dbMo = vpMath::lookAt(from, to, Rrot * vpColVector({ 0.0, 1.0, 0.0 }));
sim.setCameraPosition(dbMo);
sim.getImage(I, cam);
images[i] = I;
if (i % 20 == 0 && opt_display) {
}
}
std::cout << "Computing PCA, this may take some time!" << std::endl;
// create two distinct objects: if the projection is stateful, using a single mapping could lead to undesired behaviour
std::cout << "Explained variance: " << pca.getExplainedVariance().sum() * 100.0 << "%" << std::endl;
sMapping = std::shared_ptr<vpLuminanceMapping>(new vpLuminancePCA(pca));
sdMapping = std::shared_ptr<vpLuminanceMapping>(new vpLuminancePCA(pca));
}
else if (opt_method == "dct") {
sMapping = std::shared_ptr<vpLuminanceMapping>(new vpLuminanceDCT(opt_numComponents));
sdMapping = std::shared_ptr<vpLuminanceMapping>(new vpLuminanceDCT(opt_numComponents));
}
else {
throw vpException(vpException::badValue, "Method must be pca or dct!");
}
// set the robot at the desired position
sim.setCameraPosition(cdMo);
sim.getImage(I, cam); // and aquire the image Id
Id = I;
#if defined(VISP_HAVE_GUI)
// display the image
#if defined(VISP_HAVE_X11)
vpDisplayX d;
#elif defined(VISP_HAVE_GDI)
#elif defined(VISP_HAVE_GTK)
#elif defined(HAVE_OPENCV_HIGHGUI)
#endif
#if defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_GTK) || defined(VISP_HAVE_OPENCV)
if (opt_display) {
d.init(I, 20, 10, "Current image");
}
if (opt_display && opt_click_allowed) {
std::cout << "Click in the image to continue..." << std::endl;
}
#endif
#endif
// ----------------------------------------------------------
// position the robot at the initial position
// ----------------------------------------------------------
// camera desired position
cMo.buildFrom(0.0, 0, Z + 0.2, vpMath::rad(15), vpMath::rad(-5), vpMath::rad(5));
vpHomogeneousMatrix wMo; // Set to identity
vpHomogeneousMatrix wMc; // Camera position in the world frame
// set the robot at the desired position
I = 0u;
sim.getImage(I, cam); // and aquire the image Id
#if defined(VISP_HAVE_GUI) && (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_GTK))
if (opt_display) {
}
if (opt_display && opt_click_allowed) {
std::cout << "Click in the image to continue..." << std::endl;
}
#endif
Idiff = I;
// Display image difference
#if defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_GTK)
#if defined(VISP_HAVE_X11)
vpDisplayX d1, d2;
#elif defined(VISP_HAVE_GDI)
vpDisplayGDI d1, d2;
#elif defined(VISP_HAVE_GTK)
vpDisplayGTK d1, d2;
#endif
if (opt_display) {
d1.init(Idiff, 40 + static_cast<int>(I.getWidth()), 10, "photometric visual servoing : s-s* ");
d2.init(Irec, 40 + static_cast<int>(I.getWidth()) * 2, 10, "Reconstructed image");
}
#endif
// create the robot (here a simulated free flying camera)
robot.setSamplingTime(0.04);
wMc = wMo * cMo.inverse();
robot.setPosition(wMc);
// ------------------------------------------------------
// Visual feature, interaction matrix, error
// s, Ls, Lsd, Lt, Lp, etc
// ------------------------------------------------------
// current visual feature built from the image
vpFeatureLuminance luminanceI;
luminanceI.init(I.getHeight(), I.getWidth(), Z);
luminanceI.setCameraParameters(cam);
vpFeatureLuminanceMapping sI(luminanceI, sMapping);
sI.buildFrom(I);
sI.getMapping()->inverse(sI.get_s(), Irec);
// desired visual feature built from the image
vpFeatureLuminance luminanceId;
luminanceId.init(I.getHeight(), I.getWidth(), Z);
luminanceId.setCameraParameters(cam);
vpFeatureLuminanceMapping sId(luminanceId, sdMapping);
sId.buildFrom(Id);
// set a velocity control mode
int iter = 1;
int iterGN = opt_niter / 8;
double normError = 0;
vpColVector v; // camera velocity sent to the robot
vpColVector error(sI.dimension_s(), 0);
unsigned int n = 6;
vpMatrix Hs(n, n);
vpMatrix diagHs(n, n);
vpChrono chrono;
chrono.start();
std::cout << "Starting VS loop" << std::endl;
do {
std::cout << "--------------------------------------------" << iter++ << std::endl;
// Acquire the new image
sim.getImage(I, cam);
// Compute current visual features
sI.buildFrom(I);
sI.getMapping()->inverse(sI.get_s(), Irec);
if (iter > iterGN) {
mu = 0.0001;
opt_lambda = lambdaGN;
}
sI.interaction(L);
sI.error(sId, error);
Hs = L.AtA();
for (unsigned int i = 0; i < n; i++) {
diagHs[i][i] = Hs[i][i];
}
H = ((mu * diagHs) + Hs).inverseByLU();
// Compute the control law
v = -opt_lambda * H * L.t() * error;
normError = error.sumSquare();
std::cout << " |e| = " << normError << std::endl;
std::cout << " |v| = " << sqrt(v.sumSquare()) << std::endl;
#if defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_GTK)
if (opt_display) {
}
#endif
// send the robot velocity
wMc = robot.getPosition();
cMo = wMc.inverse() * wMo;
} while (normError > 200 && iter < opt_niter);
chrono.stop();
std::cout << "Time to convergence: " << chrono.getDurationMs() << " ms" << std::endl;
v = 0;
if (normError > 200) {
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
catch (const vpException &e) {
std::cout << "Catch an exception: " << e << std::endl;
return EXIT_FAILURE;
}
#else
(void)argc;
(void)argv;
std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
return EXIT_SUCCESS;
#endif
}
Generic class defining intrinsic camera parameters.
void start(bool reset=true)
Definition: vpTime.cpp:401
void stop()
Definition: vpTime.cpp:416
double getDurationMs()
Definition: vpTime.cpp:390
Implementation of column vector and the associated operations.
Definition: vpColVector.h:191
double sumSquare() const
double sum() const
static const vpColor black
Definition: vpColor.h:211
Display for windows using GDI (available on any windows 32 platform).
Definition: vpDisplayGDI.h:130
The vpDisplayGTK allows to display image using the GTK 3rd party library. Thus to enable this class G...
Definition: vpDisplayGTK.h:133
void init(vpImage< unsigned char > &I, int win_x=-1, int win_y=-1, const std::string &win_title="") VP_OVERRIDE
The vpDisplayOpenCV allows to display image using the OpenCV library. Thus to enable this class OpenC...
void init(vpImage< unsigned char > &I, int winx=-1, int winy=-1, const std::string &title="") VP_OVERRIDE
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
static void display(const vpImage< unsigned char > &I)
static void flush(const vpImage< unsigned char > &I)
error that can be emitted by ViSP classes.
Definition: vpException.h:60
@ badValue
Used to indicate that a value is not in the allowed range.
Definition: vpException.h:73
Class to combine luminance features (photometric servoing)
Class that defines the image luminance visual feature.
void init(unsigned int _nbr, unsigned int _nbc, double _Z)
static const int DEFAULT_BORDER
void setCameraParameters(const vpCameraParameters &_cam)
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix & buildFrom(const vpTranslationVector &t, const vpRotationMatrix &R)
vpHomogeneousMatrix inverse() const
vpTranslationVector getTranslationVector() const
static void read(vpImage< unsigned char > &I, const std::string &filename, int backend=IO_DEFAULT_BACKEND)
Definition: vpImageIo.cpp:147
Class which enables to project an image in the 3D space and get the view of a virtual camera.
void getImage(vpImage< unsigned char > &I, const vpCameraParameters &cam)
void init(const vpImage< unsigned char > &I, vpColVector *X)
void setCleanPreviousImage(const bool &clean, const vpColor &color=vpColor::white)
void setInterpolationType(const vpInterpolationType interplt)
void setCameraPosition(const vpHomogeneousMatrix &cMt)
static void imageDifference(const vpImage< unsigned char > &I1, const vpImage< unsigned char > &I2, vpImage< unsigned char > &Idiff)
unsigned int getWidth() const
Definition: vpImage.h:242
unsigned int getHeight() const
Definition: vpImage.h:181
static std::string getViSPImagesDataPath()
Definition: vpIoTools.cpp:1053
static std::string createFilePath(const std::string &parent, const std::string &child)
Definition: vpIoTools.cpp:1427
Implementation of .
Implementation of .
static vpLuminancePCA learn(const std::vector< vpImage< unsigned char >> &images, const unsigned int projectionSize, const unsigned int imageBorder=0)
Compute a new Principal Component Analysis on set of images.
vpColVector getExplainedVariance() const
Get the values of explained variance by each of the eigen vectors.
static double rad(double deg)
Definition: vpMath.h:129
static vpHomogeneousMatrix lookAt(const vpColVector &from, const vpColVector &to, vpColVector tmp)
Definition: vpMath.cpp:688
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:169
vpMatrix inverseByLU() const
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:70
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) VP_OVERRIDE
@ CAMERA_FRAME
Definition: vpRobot.h:84
@ STATE_VELOCITY_CONTROL
Initialize the velocity controller.
Definition: vpRobot.h:67
virtual vpRobotStateType setRobotState(const vpRobot::vpRobotStateType newState)
Definition: vpRobot.cpp:202
Implementation of a rotation matrix and operations on such kind of matrices.
Class that defines the simplest robot: a free flying camera.
Class for generating random numbers with uniform probability density.
Definition: vpUniRand.h:127