Visual Servoing Platform  version 3.6.1 under development (2024-12-17)

#include <visp3/visual_features/vpFeatureLuminanceMapping.h>

+ Inheritance diagram for vpLuminancePCA:

Public Member Functions

 vpLuminancePCA ()
 
virtual ~vpLuminancePCA ()
 
 vpLuminancePCA (const std::shared_ptr< vpMatrix > &basis, const std::shared_ptr< vpColVector > &mean, const vpColVector &explainedVariance)
 
 vpLuminancePCA (const vpLuminancePCA &other)
 
vpLuminancePCAoperator= (const vpLuminancePCA &other)
 
void init (const std::shared_ptr< vpMatrix > &basis, const std::shared_ptr< vpColVector > &mean, const vpColVector &variance)
 
std::shared_ptr< vpMatrixgetBasis () const
 
std::shared_ptr< vpColVectorgetMean () const
 
vpColVector getExplainedVariance () const
 
void map (const vpImage< unsigned char > &I, vpColVector &s) VP_OVERRIDE
 
void inverse (const vpColVector &s, vpImage< unsigned char > &I) VP_OVERRIDE
 
void interaction (const vpImage< unsigned char > &I, const vpMatrix &LI, const vpColVector &s, vpMatrix &L) VP_OVERRIDE
 
void save (const std::string &basisFilename, const std::string &meanFileName, const std::string &explainedVarianceFile) const
 
unsigned int getProjectionSize () const
 
unsigned int getBorder () const
 
void setBorder (unsigned border)
 

Static Public Member Functions

static vpLuminancePCA load (const std::string &basisFilename, const std::string &meanFileName, const std::string &explainedVarianceFile)
 
static vpLuminancePCA learn (const std::vector< vpImage< unsigned char >> &images, const unsigned int projectionSize, const unsigned int imageBorder=0)
 
static vpLuminancePCA learn (const vpMatrix &images, const unsigned int projectionSize)
 
static void imageAsVector (const vpImage< unsigned char > &I, vpColVector &Ivec, unsigned border)
 
static void imageAsMatrix (const vpImage< unsigned char > &I, vpMatrix &Imat, unsigned border)
 

Protected Attributes

unsigned m_mappingSize
 
unsigned m_border
 

Detailed Description

Implementation of [35].

Projects an image onto an orthogonal subspace, obtained via Principal Component Analysis (PCA).

The orthogonal basis is obtained through Singular Value Decomposition of a dataset of images (see vpLuminancePCA::learn) where the $ k $ first basis vectors that explain the most variance are kept.

an image $ I $ is projected to the representation $ \mathbf{s} $ with:

\[ \mathbf{s} = \mathbf{U}^\top (vec(\mathbf{I}) - vec(\mathbf{\bar I})) \]

with $ \mathbf{U} $ the subspace projection matrix ( $ dim(\mathbf{I}) \times k $) and $ \mathbf{\bar I} $ is the average image computed from the dataset.

Examples
catchLuminanceMapping.cpp, and photometricMappingVisualServoing.cpp.

Definition at line 150 of file vpFeatureLuminanceMapping.h.

Constructor & Destructor Documentation

◆ vpLuminancePCA() [1/3]

vpLuminancePCA::vpLuminancePCA ( )
inline

Definition at line 153 of file vpFeatureLuminanceMapping.h.

Referenced by learn(), and load().

◆ ~vpLuminancePCA()

virtual vpLuminancePCA::~vpLuminancePCA ( )
inlinevirtual

Destructor.

Definition at line 158 of file vpFeatureLuminanceMapping.h.

◆ vpLuminancePCA() [2/3]

vpLuminancePCA::vpLuminancePCA ( const std::shared_ptr< vpMatrix > &  basis,
const std::shared_ptr< vpColVector > &  mean,
const vpColVector explainedVariance 
)

Build a new PCA object.

Parameters
basis$ \mathbf{U}^\top $ a k x dim(I) matrix
mean$ vec(\mathbf{\bar I}) $ the mean image represented as a vector
explainedVarianceThe explained variance for each of the k vectors.

Definition at line 76 of file vpFeatureLuminanceMapping.cpp.

References init().

◆ vpLuminancePCA() [3/3]

vpLuminancePCA::vpLuminancePCA ( const vpLuminancePCA other)

Copy constructor: does not make a deep copy of the basis and mean.

Definition at line 98 of file vpFeatureLuminanceMapping.cpp.

Member Function Documentation

◆ getBasis()

std::shared_ptr<vpMatrix> vpLuminancePCA::getBasis ( ) const
inline

Get $ \mathbf{U}^\top $, the subspace projection matrix ( $ k \times dim(\mathbf{I}) $)

Returns
std::shared_ptr<vpColVector>
Examples
catchLuminanceMapping.cpp.

Definition at line 191 of file vpFeatureLuminanceMapping.h.

◆ getBorder()

unsigned int vpLuminanceMapping::getBorder ( ) const
inlineinherited

Returns the number of pixels that are removed by the photometric VS computation.

Returns
space size
Examples
catchLuminanceMapping.cpp.

Definition at line 114 of file vpFeatureLuminanceMapping.h.

◆ getExplainedVariance()

vpColVector vpLuminancePCA::getExplainedVariance ( ) const
inline

Get the values of explained variance by each of the eigen vectors.

When all eigenvectors of the dataset are considered, the explained variance total is 1. When they are not all considered (as should be the case), their sum should be below 1.

Returns
vpColVector
Examples
catchLuminanceMapping.cpp, and photometricMappingVisualServoing.cpp.

Definition at line 205 of file vpFeatureLuminanceMapping.h.

◆ getMean()

std::shared_ptr<vpColVector> vpLuminancePCA::getMean ( ) const
inline

Get $ vec(\mathbf{\bar I}) $, the mean image computed from the dataset.

Returns
std::shared_ptr<vpColVector>
Examples
catchLuminanceMapping.cpp.

Definition at line 196 of file vpFeatureLuminanceMapping.h.

◆ getProjectionSize()

unsigned int vpLuminanceMapping::getProjectionSize ( ) const
inlineinherited

Returns the size of the space to which an image is mapped to.

Returns
space size
Examples
catchLuminanceMapping.cpp.

Definition at line 107 of file vpFeatureLuminanceMapping.h.

◆ imageAsMatrix()

void vpLuminanceMapping::imageAsMatrix ( const vpImage< unsigned char > &  I,
vpMatrix Imat,
unsigned  border 
)
staticinherited

◆ imageAsVector()

BEGIN_VISP_NAMESPACE void vpLuminanceMapping::imageAsVector ( const vpImage< unsigned char > &  I,
vpColVector Ivec,
unsigned  border 
)
staticinherited

◆ init()

void vpLuminancePCA::init ( const std::shared_ptr< vpMatrix > &  basis,
const std::shared_ptr< vpColVector > &  mean,
const vpColVector variance 
)

Initialize the PCA object with a basis, mean and explained variance vector.

See also
vpLuminancePCA()
Parameters
basis
mean
variance

Definition at line 83 of file vpFeatureLuminanceMapping.cpp.

References vpFeatureLuminance::DEFAULT_BORDER, vpException::dimensionError, vpArray2D< Type >::getRows(), vpLuminanceMapping::m_border, and vpLuminanceMapping::m_mappingSize.

Referenced by vpLuminancePCA().

◆ interaction()

void vpLuminancePCA::interaction ( const vpImage< unsigned char > &  I,
const vpMatrix LI,
const vpColVector s,
vpMatrix L 
)
virtual

Compute the interaction matrix associated with the representation s.

Parameters
Iinput image used to compute s
LIPhotometric interaction matrix associated to I (see vpFeatureLuminance)
sthe already computed representation
LThe output interaction matrix, of dimensions getProjectionSize() x 6

Implements vpLuminanceMapping.

Definition at line 139 of file vpFeatureLuminanceMapping.cpp.

◆ inverse()

void vpLuminancePCA::inverse ( const vpColVector s,
vpImage< unsigned char > &  I 
)
virtual

Reconstruct I from a representation s.

Parameters
sthe representation
IOutput lossy reconstruction

Implements vpLuminanceMapping.

Examples
catchLuminanceMapping.cpp.

Definition at line 127 of file vpFeatureLuminanceMapping.cpp.

References vpImage< Type >::resize().

◆ learn() [1/2]

vpLuminancePCA vpLuminancePCA::learn ( const std::vector< vpImage< unsigned char >> &  images,
const unsigned int  projectionSize,
const unsigned int  imageBorder = 0 
)
static

Compute a new Principal Component Analysis on set of images.

Parameters
imagesThe list of images used to compute the PCA
projectionSizethe number of eigenvectors that are kept for the final projection
imageBorderThe number of pixels to crop on each side of the image before adding it to the image set, effectively taking the center crop. Useful when the images do not have the correct dimensions. Typically, the input image to PCA is smaller than the one used when computing luminance features, since the latter step requires crops the image.
Returns
the PCA computed on the images
Exceptions
ifthe images do not have the same dimensions
Examples
catchLuminanceMapping.cpp, and photometricMappingVisualServoing.cpp.

Definition at line 188 of file vpFeatureLuminanceMapping.cpp.

References vpException::badValue, vpArray2D< Type >::getCols(), vpImage< Type >::getHeight(), vpImage< Type >::getWidth(), vpArray2D< Type >::resize(), and vpMatrix::transpose().

◆ learn() [2/2]

vpLuminancePCA vpLuminancePCA::learn ( const vpMatrix images,
const unsigned int  projectionSize 
)
static

Compute a new Principal Component Analysis on dataset.

Parameters
imagesThe data matrix, where each column represents a single data point (image)
projectionSizethe number of eigenvectors that are kept for the final projection
Returns
the PCA computed on the images

Definition at line 232 of file vpFeatureLuminanceMapping.cpp.

References vpException::badValue, vpMatrix::getCol(), vpArray2D< Type >::getCols(), vpArray2D< Type >::getRows(), vpColVector::sum(), vpMatrix::svd(), vpMatrix::t(), and vpLuminancePCA().

◆ load()

vpLuminancePCA vpLuminancePCA::load ( const std::string &  basisFilename,
const std::string &  meanFileName,
const std::string &  explainedVarianceFile 
)
static

Save the PCA basis to multiple text files, for later use via the load function.

Parameters
basisFilenameThe file in which $ \mathbf{U}^\top $ is stored
meanFileNameThe file in which $ \mathbf{\bar I} $ is stored
explainedVarianceFileThe file containing the explained variance.
Exceptions
iffiles cannot be read, or if basis and mean dimensions are incorrect.
Examples
catchLuminanceMapping.cpp.

Definition at line 144 of file vpFeatureLuminanceMapping.cpp.

References vpException::dimensionError, vpArray2D< Type >::getCols(), vpMatrix::loadMatrix(), and vpLuminancePCA().

◆ map()

void vpLuminancePCA::map ( const vpImage< unsigned char > &  I,
vpColVector s 
)
virtual

Map an image I to a representation s. This representation s has getProjectionSize() rows.

Note that when combined with vpFeatureLuminanceMapping, The image I does not have the same size as the image input of vpFeatureLuminanceMapping::build. I is the center crop of this image.

Parameters
IThe input image
sThe resulting representation that will serve as visual servoing features.

Implements vpLuminanceMapping.

Examples
catchLuminanceMapping.cpp.

Definition at line 117 of file vpFeatureLuminanceMapping.cpp.

References vpImage< Type >::getHeight(), vpImage< Type >::getWidth(), vpLuminanceMapping::imageAsVector(), and vpLuminanceMapping::m_border.

◆ operator=()

vpLuminancePCA & vpLuminancePCA::operator= ( const vpLuminancePCA other)

◆ save()

void vpLuminancePCA::save ( const std::string &  basisFilename,
const std::string &  meanFileName,
const std::string &  explainedVarianceFile 
) const

Save the PCA basis to multiple text files, for later use via the load function.

Parameters
basisFilenameThe file in which $ \mathbf{U}^\top $ is stored
meanFileNameThe file in which $ \mathbf{\bar I} $ is stored
explainedVarianceFileThe file containing the explained variance.
Exceptions
ifthe basis is null or mean is null
Examples
catchLuminanceMapping.cpp.

Definition at line 173 of file vpFeatureLuminanceMapping.cpp.

References vpException::dimensionError, vpException::notInitialized, and vpMatrix::saveMatrix().

◆ setBorder()

void vpLuminanceMapping::setBorder ( unsigned  border)
inlineinherited

Set the number of pixels that are removed by the photometric VS computation This function should be called by vpFeatureLuminanceMapping.

Parameters
border
Examples
catchLuminanceMapping.cpp.

Definition at line 122 of file vpFeatureLuminanceMapping.h.

Member Data Documentation

◆ m_border

unsigned vpLuminanceMapping::m_border
protectedinherited

Final vector size.

Definition at line 129 of file vpFeatureLuminanceMapping.h.

Referenced by init(), map(), vpLuminanceDCT::map(), and operator=().

◆ m_mappingSize

unsigned vpLuminanceMapping::m_mappingSize
protectedinherited