Visual Servoing Platform  version 3.6.1 under development (2024-12-17)
All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends Modules Pages
catchLuminanceMapping.cpp
/*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2024 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Performs various tests on the point class.
*/
#include <visp3/visual_features/vpFeatureLuminanceMapping.h>
#include <visp3/core/vpSubMatrix.h>
#include <visp3/core/vpUniRand.h>
#include <visp3/core/vpIoTools.h>
#if defined(VISP_HAVE_CATCH2)
#include <catch_amalgamated.hpp>
#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif
vpMatrix orthogonalBasis(unsigned n, unsigned seed)
{
vpUniRand rand(seed);
vpMatrix basis(n, n);
vpColVector norms(n);
//start with random basis
for (unsigned int row = 0; row < n; ++row) {
double norm = 0.0;
for (unsigned int col = 0; col < n; ++col) {
basis[row][col] = rand.uniform(-1.0, 1.0);
norm += basis[row][col] * basis[row][col];
}
norm = 1.0 / sqrt(norm);
for (unsigned int col = 0; col < n; ++col) {
basis[row][col] *= norm;
}
}
// Apply gram schmidt process
norms[0] = basis.getRow(0).sumSquare();
for (unsigned i = 1; i < n; ++i) {
vpColVector uit = basis.getRow(i).t();
for (unsigned j = 0; j < i; ++j) {
vpRowVector vj = basis.getRow(j);
vpRowVector res = vj * ((vj * uit) / (norms[j]));
for (unsigned k = 0; k < n; ++k) {
basis[i][k] -= res[k];
}
}
norms[i] = basis.getRow(i).sumSquare();
}
for (unsigned int row = 0; row < n; ++row) {
double norm = sqrt(norms[row]);
for (unsigned int col = 0; col < n; ++col) {
basis[row][col] /= norm;
}
}
return basis;
}
SCENARIO("Using PCA features", "[visual_features]")
{
GIVEN("A matrix containing simple data")
{
const unsigned h = 16, w = 16;
const unsigned numDataPoints = 4;
const unsigned int dataDim = h * w;
const unsigned int trueComponents = 3;
// Generate numDataPoints vectors in a "dataDim"-dimensional space.
// The data is generated from "trueComponents" vectors, that are orthogonal
const vpMatrix orthoFull = (orthogonalBasis(dataDim, 42) + vpMatrix(dataDim, dataDim, 1.0)) * 127.5; // dataDim x dataDim
const vpMatrix ortho(orthoFull, 0, 0, trueComponents, dataDim); // trueComponents X dataDim
const vpMatrix coefficients(numDataPoints, trueComponents);
vpUniRand rand(17);
for (unsigned int i = 0; i < coefficients.getRows(); ++i) {
double sum = 0.0;
for (unsigned int j = 0; j < coefficients.getCols(); ++j) {
coefficients[i][j] = rand.uniform(0.0, 1.0);
sum += coefficients[i][j] * coefficients[i][j];
}
const double inv_norm = 1.0 / sqrt(sum);
for (unsigned int j = 0; j < coefficients.getCols(); ++j) {
coefficients[i][j] *= inv_norm;
}
}
vpMatrix data = coefficients * ortho;
WHEN("Learning PCA basis with too many components")
{
unsigned int k = data.getCols() + 1;
THEN("An exception is thrown")
{
REQUIRE_THROWS(vpLuminancePCA::learn(data.transpose(), k));
}
}
WHEN("Learning with more images than pixels")
{
vpMatrix wrongData(20, 50);
THEN("An exception is thrown")
{
REQUIRE_THROWS(vpLuminancePCA::learn(wrongData.transpose(), 32));
}
}
WHEN("Learning PCA basis")
{
for (unsigned int k = 2; k <= trueComponents; ++k) {
const vpMatrix &basis = *pca.getBasis();
THEN("Basis has correct dimensions")
{
REQUIRE(basis.getRows() == k);
REQUIRE(basis.getCols() == dataDim);
}
THEN("The basis is orthonormal")
{
const vpMatrix Iapprox = basis * basis.t();
I.eye(basis.getRows());
bool matrixSame = true;
for (unsigned int row = 0; row < I.getRows(); ++row) {
for (unsigned int col = 0; col < I.getCols(); ++col) {
if (fabs(I[row][col] - Iapprox[row][col]) > 1e-6) {
matrixSame = false;
break;
}
}
}
REQUIRE(matrixSame);
}
THEN("Mean vector has correct dimensions")
{
REQUIRE(pca.getMean()->getRows() == dataDim);
REQUIRE(pca.getMean()->getCols() == 1);
}
THEN("Modifying the basis size (number of inputs) by hand and saving")
{
const std::string tempDir = vpIoTools::makeTempDirectory("visp_test_pca_wrong");
const std::string basisFile = vpIoTools::createFilePath(tempDir, "basis.txt");
const std::string meanFile = vpIoTools::createFilePath(tempDir, "mean.txt");
const std::string varFile = vpIoTools::createFilePath(tempDir, "var.txt");
pca.getBasis()->resize(pca.getBasis()->getRows(), pca.getBasis()->getCols() - 1);
REQUIRE_THROWS(pca.save(basisFile, meanFile, varFile));
}
THEN("Modifying the mean Columns by hand")
{
const std::string tempDir = vpIoTools::makeTempDirectory("visp_test_pca_wrong");
const std::string basisFile = vpIoTools::createFilePath(tempDir, "basis.txt");
const std::string meanFile = vpIoTools::createFilePath(tempDir, "mean.txt");
const std::string varFile = vpIoTools::createFilePath(tempDir, "var.txt");
std::shared_ptr<vpColVector> mean = pca.getMean();
mean->resize(mean->getRows() + 1, false);
REQUIRE_THROWS(pca.save(basisFile, meanFile, varFile));
}
THEN("Saving and loading pca leads to same basis and mean")
{
const std::string tempDir = vpIoTools::makeTempDirectory("visp_test_pca");
const std::string basisFile = vpIoTools::createFilePath(tempDir, "basis.txt");
const std::string meanFile = vpIoTools::createFilePath(tempDir, "mean.txt");
const std::string varFile = vpIoTools::createFilePath(tempDir, "var.txt");
pca.save(basisFile, meanFile, varFile);
const vpLuminancePCA pca2 = vpLuminancePCA::load(basisFile, meanFile, varFile);
const vpMatrix basisDiff = *pca.getBasis() - *pca2.getBasis();
const vpColVector meanDiff = *pca.getMean() - *pca2.getMean();
const vpColVector explainedVarDiff = pca.getExplainedVariance() - pca2.getExplainedVariance();
bool basisSame = true;
bool meanSame = true;
bool explainedVarSame = true;
for (unsigned int i = 0; i < basisDiff.getRows(); ++i) {
for (unsigned int j = 0; j < basisDiff.getCols(); ++j) {
if (fabs(basisDiff[i][j]) > 1e-10) {
basisSame = false;
break;
}
}
}
REQUIRE(basisSame);
for (unsigned int i = 0; i < meanDiff.getRows(); ++i) {
if (fabs(meanDiff[i]) > 1e-10) {
std::cout << meanDiff << std::endl;
meanSame = false;
break;
}
}
REQUIRE(meanSame);
for (unsigned int i = 0; i < explainedVarDiff.getRows(); ++i) {
if (fabs(explainedVarDiff[i]) > 1e-10) {
explainedVarSame = false;
break;
}
}
REQUIRE(explainedVarSame);
}
THEN("Explained variance is below 1 and sorted in descending order")
{
const vpColVector var = pca.getExplainedVariance();
REQUIRE(var.sum() < 1.0);
for (int i = 1; i < (int)var.getRows() - 1; ++i) {
REQUIRE(var[i] >= var[i + 1]);
}
}
if (k == trueComponents) {
WHEN("K is the true manifold dimensionality")
{
THEN("explained variance is close to 1")
{
REQUIRE(pca.getExplainedVariance().sum() > 0.99);
}
THEN("Inverse mapping leads back to the same data")
{
for (unsigned int i = 0; i < numDataPoints; ++i) {
for (unsigned int j = 0; j < data.getCols(); ++j) {
I.bitmap[j] = static_cast<unsigned char>(data[i][j]);
}
pca.setBorder(0);
pca.map(I, s);
pca.inverse(s, Irec);
for (unsigned int j = 0; j < data.getCols(); ++j) {
REQUIRE(abs(static_cast<int>(I.bitmap[j]) - static_cast<int>(Irec.bitmap[j])) < 2);
}
}
}
}
}
THEN("Projecting data is correct")
{
{
pca.setBorder(0);
pca.map(I, s);
REQUIRE(s.size() == pca.getProjectionSize());
}
{
const unsigned border = 3;
pca.setBorder(border);
REQUIRE(pca.getBorder() == border);
vpImage<unsigned char> I(h + 2 * border, w + 2 * border);
pca.map(I, s);
REQUIRE(s.size() == pca.getProjectionSize());
}
}
}
}
}
WHEN("Saving unintialized PCA")
{
const std::string tempDir = vpIoTools::makeTempDirectory("visp_test_pca");
const std::string basisFile = vpIoTools::createFilePath(tempDir, "basis.txt");
const std::string meanFile = vpIoTools::createFilePath(tempDir, "mean.txt");
const std::string varFile = vpIoTools::createFilePath(tempDir, "var.txt");
THEN("an exception is thrown")
{
REQUIRE_THROWS(pca.save(basisFile, meanFile, varFile));
}
}
}
#if (VISP_CXX_STANDARD > VISP_CXX_STANDARD_11)
SCENARIO("Using DCT features", "[visual_features]")
{
GIVEN("A matrix")
{
std::vector<std::tuple<vpMatrix, vpColVector, vpMatrix>> data = {
{
{0.0, 1.0, 2.0},
{3.0, 4.0, 5.0},
{6.0, 7.0, 8.0}
}),
{ 0.0, 1.0, 3.0, 6.0, 4.0, 2.0, 5.0, 7.0, 8.0 }
),
{0.0, 1.0, 5.0},
{2.0, 4.0, 6.0},
{3.0, 7.0, 8.0}
})
}
};
for (unsigned int i = 0; i < data.size(); ++i) {
WHEN("Building the associated zigzag indexing matrix")
{
vpMatrix m = std::get<0>(data[i]);
vpColVector contentAsZigzag = std::get<1>(data[i]);
const vpMatrix mAfterWriterVec = std::get<2>(data[i]);
zigzag.init(m.getRows(), m.getCols());
THEN("Calling getValues with wrong matrix rows throws")
{
vpMatrix wrongM(m.getRows() + 1, m.getCols());
REQUIRE_THROWS(zigzag.getValues(wrongM, 0, 2, s));
}
THEN("Calling getValues with wrong matrix cols throws")
{
vpMatrix wrongM(m.getRows(), m.getCols() + 1);
REQUIRE_THROWS(zigzag.getValues(wrongM, 0, 2, s));
}
THEN("Calling getValues with wrong start and end arguments throws")
{
REQUIRE_THROWS(zigzag.getValues(m, 2, 1, s));
}
THEN("Calling getValues and querying all values returns correct result")
{
REQUIRE_NOTHROW(zigzag.getValues(m, 0, m.size(), s));
REQUIRE(s == contentAsZigzag);
}
THEN("Calling getValues and querying a subset of the values is correct")
{
REQUIRE_NOTHROW(zigzag.getValues(m, 0, m.size() / 2, s));
REQUIRE(s == contentAsZigzag.extract(0, m.size() / 2));
REQUIRE_NOTHROW(zigzag.getValues(m, m.size() / 2, m.size(), s));
REQUIRE(s == contentAsZigzag.extract(m.size() / 2, m.size() - m.size() / 2));
}
THEN("Calling setValues with wrong matrix rows throws")
{
vpMatrix wrongM(m.getRows() + 1, m.getCols());
REQUIRE_THROWS(zigzag.setValues(contentAsZigzag, 0, wrongM));
}
THEN("Calling setValues with wrong matrix cols throws")
{
vpMatrix wrongM(m.getRows(), m.getCols() + 1);
REQUIRE_THROWS(zigzag.setValues(contentAsZigzag, 0, wrongM));
}
THEN("Calling setValues with wrong start and vector size arguments throws")
{
REQUIRE_THROWS(zigzag.setValues(contentAsZigzag, m.size() - contentAsZigzag.size() + 1, m));
}
THEN("Calling setValues leads to expected result")
{
vpMatrix mWrite(m.getRows(), m.getCols());
vpColVector powered = contentAsZigzag;
for (unsigned i = 0; i < powered.size(); ++i) {
powered[i] *= powered[i];
}
vpColVector poweredRead;
REQUIRE_NOTHROW(zigzag.setValues(powered, 0, mWrite));
REQUIRE_NOTHROW(zigzag.getValues(mWrite, 0, mWrite.size(), poweredRead));
REQUIRE(powered == poweredRead);
vpColVector indices = contentAsZigzag;
for (unsigned i = 0; i < powered.size(); ++i) {
indices[i] = static_cast<double>(i);
}
vpColVector indicesRead;
REQUIRE_NOTHROW(zigzag.setValues(indices, 0, mWrite));
REQUIRE(mWrite == mAfterWriterVec);
vpMatrix m2(m.getRows(), m.getCols(), 0.0);
zigzag.setValues(contentAsZigzag.extract(0, 3), 0, m2);
zigzag.getValues(m2, 0, 3, s2);
REQUIRE(s2 == contentAsZigzag.extract(0, 3));
}
}
}
GIVEN("A constant image")
{
vpImage<unsigned char> I(32, 64, 20);
WHEN("Computing DCT")
{
vpLuminanceDCT dct(32);
dct.setBorder(0);
dct.map(I, s);
THEN("resulting feature vector has correct size")
{
REQUIRE(s.size() == 32);
}
THEN("The only non zero component is the first")
{
REQUIRE(s.sum() == Catch::Approx(s[0]).margin(1e-5));
}
dct.inverse(s, Ir);
REQUIRE((Ir.getRows() == I.getRows() && Ir.getCols() == I.getCols()));
for (unsigned i = 0; i < I.getRows(); ++i) {
for (unsigned j = 0; j < I.getCols(); ++j) {
const int diff = abs(static_cast<int>(I[i][j]) - static_cast<int>(Ir[i][j]));
REQUIRE(diff < 2);
INFO("i = " + std::to_string(i) + ", j = " + std::to_string(j));
}
}
}
}
}
}
#endif
int main(int argc, char *argv[])
{
Catch::Session session; // There must be exactly one instance
session.applyCommandLine(argc, argv);
int numFailed = session.run();
return numFailed;
}
#else
int main()
{
return EXIT_SUCCESS;
}
#endif
unsigned int getCols() const
Definition: vpArray2D.h:337
unsigned int size() const
Return the number of elements of the 2D array.
Definition: vpArray2D.h:349
unsigned int getRows() const
Definition: vpArray2D.h:347
Implementation of column vector and the associated operations.
Definition: vpColVector.h:191
vpColVector extract(unsigned int r, unsigned int colsize) const
Definition: vpColVector.h:405
double sum() const
unsigned int getCols() const
Definition: vpImage.h:171
Type * bitmap
points toward the bitmap
Definition: vpImage.h:135
unsigned int getRows() const
Definition: vpImage.h:212
static std::string createFilePath(const std::string &parent, const std::string &child)
Definition: vpIoTools.cpp:1427
static std::string makeTempDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:708
Helper class to iterate and get/set the values from a matrix, following a zigzag pattern.
void init(unsigned rows, unsigned cols)
Initialize the ZigZag object. Computes and stores the zigzag indexing for a given matrix size.
void setValues(const vpColVector &s, unsigned int start, vpMatrix &m) const
set the values in the matrix, according to the values stored in the vector s and the zigzag indexing ...
void getValues(const vpMatrix &m, unsigned int start, unsigned int end, vpColVector &s) const
Fill the vector s with (end - start) values, according to the zigzag matrix indexing strategy.
Implementation of .
unsigned int getProjectionSize() const
Returns the size of the space to which an image is mapped to.
unsigned int getBorder() const
Returns the number of pixels that are removed by the photometric VS computation.
void setBorder(unsigned border)
Set the number of pixels that are removed by the photometric VS computation This function should be c...
Implementation of .
static vpLuminancePCA learn(const std::vector< vpImage< unsigned char >> &images, const unsigned int projectionSize, const unsigned int imageBorder=0)
Compute a new Principal Component Analysis on set of images.
void inverse(const vpColVector &s, vpImage< unsigned char > &I) VP_OVERRIDE
Reconstruct I from a representation s.
void save(const std::string &basisFilename, const std::string &meanFileName, const std::string &explainedVarianceFile) const
Save the PCA basis to multiple text files, for later use via the load function.
std::shared_ptr< vpColVector > getMean() const
Get , the mean image computed from the dataset.
void map(const vpImage< unsigned char > &I, vpColVector &s) VP_OVERRIDE
Map an image I to a representation s. This representation s has getProjectionSize() rows.
std::shared_ptr< vpMatrix > getBasis() const
Get , the subspace projection matrix ( )
static vpLuminancePCA load(const std::string &basisFilename, const std::string &meanFileName, const std::string &explainedVarianceFile)
Save the PCA basis to multiple text files, for later use via the load function.
vpColVector getExplainedVariance() const
Get the values of explained variance by each of the eigen vectors.
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:169
vpRowVector getRow(unsigned int i) const
Definition: vpMatrix.cpp:590
vpMatrix transpose() const
vpMatrix t() const
Implementation of row vector and the associated operations.
Definition: vpRowVector.h:124
vpColVector t() const
double sumSquare() const
Class for generating random numbers with uniform probability density.
Definition: vpUniRand.h:127
int uniform(int a, int b)
Definition: vpUniRand.cpp:161