Visual Servoing Platform
version 3.4.0
|
#include <vpPose.h>
Public Types | |
enum | vpPoseMethodType { LAGRANGE, DEMENTHON, LOWE, RANSAC, LAGRANGE_LOWE, DEMENTHON_LOWE, VIRTUAL_VS, DEMENTHON_VIRTUAL_VS, LAGRANGE_VIRTUAL_VS } |
enum | RANSAC_FILTER_FLAGS { NO_FILTER, PREFILTER_DEGENERATE_POINTS, CHECK_DEGENERATE_POINTS } |
Static Public Member Functions | |
static void | display (vpImage< unsigned char > &I, vpHomogeneousMatrix &cMo, vpCameraParameters &cam, double size, vpColor col=vpColor::none) |
static void | display (vpImage< vpRGBa > &I, vpHomogeneousMatrix &cMo, vpCameraParameters &cam, double size, vpColor col=vpColor::none) |
static double | poseFromRectangle (vpPoint &p1, vpPoint &p2, vpPoint &p3, vpPoint &p4, double lx, vpCameraParameters &cam, vpHomogeneousMatrix &cMo) |
static int | computeRansacIterations (double probability, double epsilon, const int sampleSize=4, int maxIterations=2000) |
static void | findMatch (std::vector< vpPoint > &p2D, std::vector< vpPoint > &p3D, const unsigned int &numberOfInlierToReachAConsensus, const double &threshold, unsigned int &ninliers, std::vector< vpPoint > &listInliers, vpHomogeneousMatrix &cMo, const int &maxNbTrials=10000, bool useParallelRansac=true, unsigned int nthreads=0, bool(*func)(const vpHomogeneousMatrix &)=NULL) |
static bool | computePlanarObjectPoseFromRGBD (const vpImage< float > &depthMap, const std::vector< vpImagePoint > &corners, const vpCameraParameters &colorIntrinsics, const std::vector< vpPoint > &point3d, vpHomogeneousMatrix &cMo, double *confidence_index=NULL) |
Public Attributes | |
unsigned int | npt |
std::list< vpPoint > | listP |
double | residual |
Protected Member Functions | |
double | computeResidualDementhon (const vpHomogeneousMatrix &cMo) |
int | calculArbreDementhon (vpMatrix &b, vpColVector &U, vpHomogeneousMatrix &cMo) |
Protected Attributes | |
double | lambda |
Class used for pose computation from N points (pose from point only). Some of the algorithms implemented in this class are described in [31].
To see how to use this class you can follow the Tutorial: Pose estimation from points.
Methods that could be used to estimate the pose from points.
vpPose::vpPose | ( | ) |
Default constructor.
Definition at line 96 of file vpPose.cpp.
vpPose::vpPose | ( | const std::vector< vpPoint > & | lP | ) |
Definition at line 106 of file vpPose.cpp.
|
virtual |
Destructor that deletes the array of point (freed the memory).
Definition at line 119 of file vpPose.cpp.
References listP.
void vpPose::addPoint | ( | const vpPoint & | newP | ) |
Add a new point in the array of points.
newP | : New point to add in the array of point. |
Definition at line 149 of file vpPose.cpp.
Referenced by vpCalibration::addPoint(), vpKeyPoint::computePose(), findMatch(), vpMbTracker::initClick(), vpMbTracker::initFromPoints(), poseFromRectangle(), and poseRansac().
void vpPose::addPoints | ( | const std::vector< vpPoint > & | lP | ) |
Add (append) a list of points in the array of points.
lP | : List of points to add (append). |
Definition at line 164 of file vpPose.cpp.
Referenced by computePlanarObjectPoseFromRGBD().
|
protected |
Return 0 if success, -1 if failure.
Definition at line 298 of file vpPoseDementhon.cpp.
References computeResidualDementhon(), vpMath::deg(), vpHomogeneousMatrix::extract(), and npt.
Referenced by poseDementhonPlan().
void vpPose::clearPoint | ( | ) |
Delete the array of point
Definition at line 134 of file vpPose.cpp.
Referenced by vpCalibration::addPoint(), and vpMbTracker::initClick().
|
static |
Compute the pose of a planar object from corresponding 2D-3D point coordinates and depth map. Depth map is here used to estimate the 3D plane of the object.
[in] | depthMap | : Depth map aligned to the color image from where corners are extracted. |
[in] | corners | : Vector of 2D pixel coordinates of the object in an image. |
[in] | colorIntrinsics | : Camera parameters used to convert corners from pixel to meters. |
[in] | point3d | : Vector of 3D points corresponding to the model of the planar object. |
[out] | cMo | : Computed pose. |
[out] | confidence_index | : Confidence index in range [0, 1]. When values are close to 1, it means that pose estimation confidence is high. Values close to 0 indicate that pose is not well estimated. This confidence index corresponds to the product between the normalized number of depth data covering the tag and the normalized M-estimator weights returned by the robust estimation of the tag 3D plane. |
The following code snippet implemented in tutorial-apriltag-detector-live-rgbd-realsense.cpp shows how to use this function to estimate the pose of an AprilTag using this method:
Definition at line 250 of file vpPoseRGBD.cpp.
References addPoints(), computePose(), vpPixelMeterConversion::convertPoint(), vpException::fatalError, vpImagePoint::get_u(), vpImagePoint::get_v(), vpPolygon::getArea(), vpRect::getBottom(), vpPolygon::getBoundingBox(), vpImage< Type >::getHeight(), vpRect::getLeft(), vpRect::getRight(), vpRect::getTop(), vpImage< Type >::getWidth(), vpPolygon::isInside(), and VIRTUAL_VS.
bool vpPose::computePose | ( | vpPoseMethodType | method, |
vpHomogeneousMatrix & | cMo, | ||
bool(*)(const vpHomogeneousMatrix &) | func = NULL |
||
) |
Compute the pose according to the desired method which are:
Definition at line 374 of file vpPose.cpp.
References coplanar(), DEMENTHON, DEMENTHON_LOWE, DEMENTHON_VIRTUAL_VS, LAGRANGE, LAGRANGE_LOWE, LAGRANGE_VIRTUAL_VS, LOWE, vpPoseException::notEnoughPointError, npt, poseDementhonNonPlan(), poseDementhonPlan(), poseLagrangeNonPlan(), poseLagrangePlan(), poseLowe(), poseRansac(), poseVirtualVS(), RANSAC, and VIRTUAL_VS.
Referenced by vpCalibration::addPoint(), computePlanarObjectPoseFromRGBD(), vpKeyPoint::computePose(), findMatch(), vpMbTracker::initClick(), vpMbTracker::initFromPoints(), poseFromRectangle(), and poseRansac().
|
static |
Compute the number of RANSAC iterations to ensure with a probability p that at least one of the random samples of s points is free from outliers.
probability | : Probability that at least one of the random samples is free from outliers (typically p=0.99). |
epsilon | : Probability that a selected point is an outlier (between 0 and 1). |
sampleSize | : Minimum number of points to estimate the model (4 for a pose estimation). |
maxIterations | : Upper bound on the number of iterations or -1 for INT_MAX. |
maxIterations
if it exceeds the desired upper bound or INT_MAX if maxIterations=-1. Definition at line 594 of file vpPoseRansac.cpp.
References vpMath::nul().
double vpPose::computeResidual | ( | const vpHomogeneousMatrix & | cMo | ) | const |
Compute and return the sum of squared residuals expressed in meter^2 for the pose matrix cMo.
cMo | : Input pose. The matrix that defines the pose to be tested. |
Definition at line 336 of file vpPose.cpp.
References vpPoint::get_x(), vpPoint::get_y(), listP, vpMath::sqr(), and vpForwardProjection::track().
Referenced by vpCalibration::addPoint(), vpMbTracker::initClick(), vpMbTracker::initFromPoints(), and poseRansac().
|
protected |
Compute and return the residual corresponding to the sum of squared residuals in meter^2 for the pose matrix cMo.
cMo | : the matrix that defines the pose to be tested. |
Definition at line 546 of file vpPoseDementhon.cpp.
References npt, and vpMath::sqr().
Referenced by calculArbreDementhon(), poseDementhonNonPlan(), and poseDementhonPlan().
bool vpPose::coplanar | ( | int & | coplanar_plane_type | ) |
Test the coplanarity of the set of points
coplanar_plane_type | 1: if plane x=cst 2: if plane y=cst 3: if plane z=cst 4: if the points are collinear. 0: any other plane |
Definition at line 184 of file vpPose.cpp.
References vpColVector::crossProd(), vpPoint::get_oX(), vpPoint::get_oY(), vpPoint::get_oZ(), listP, vpPoseException::notEnoughPointError, npt, vpMath::sqr(), vpColVector::sumSquare(), vpDEBUG_TRACE, and vpERROR_TRACE.
Referenced by computePose().
|
static |
Display in the image I the pose represented by its homogenous transformation cMo as a 3 axis frame.
I | Image where the pose is displayed in overlay. |
cMo | Considered pose to display. |
cam | Camera parameters associated to image I. |
size | length in meter of the axis that will be displayed |
col | Color used to display the 3 axis. If vpColor::none, red, green and blue will represent x-axiw, y-axis and z-axis respectively. |
Definition at line 489 of file vpPose.cpp.
References vpDisplay::displayFrame().
|
static |
Display in the image I the pose represented by its homogenous transformation cMo as a 3 axis frame.
I | Image where the pose is displayed in overlay. |
cMo | Considered pose to display. |
cam | Camera parameters associated to image I. |
size | length in meter of the axis that will be displayed |
col | Color used to display the 3 axis. If vpColor::none, red, green and blue will represent x-axiw, y-axis and z-axis respectively. |
Definition at line 504 of file vpPose.cpp.
References vpDisplay::displayFrame().
void vpPose::displayModel | ( | vpImage< unsigned char > & | I, |
vpCameraParameters & | cam, | ||
vpColor | col = vpColor::none |
||
) |
Display the coordinates of the points in the image plane that are used to compute the pose in image I.
Definition at line 513 of file vpPose.cpp.
References vpMeterPixelConversion::convertPoint(), vpDisplay::displayCross(), listP, and vpTracker::p.
void vpPose::displayModel | ( | vpImage< vpRGBa > & | I, |
vpCameraParameters & | cam, | ||
vpColor | col = vpColor::none |
||
) |
Display the coordinates of the points in the image plane that are used to compute the pose in image I.
Definition at line 531 of file vpPose.cpp.
References vpMeterPixelConversion::convertPoint(), vpDisplay::displayCross(), listP, and vpTracker::p.
|
static |
Match a vector p2D of 2D point (x,y) and a vector p3D of 3D points (X,Y,Z) using the Ransac algorithm.
At least numberOfInlierToReachAConsensus of true correspondance are required to validate the pose
The inliers are given in a vector of vpPoint listInliers.
The pose is returned in cMo.
p2D | : Vector of 2d points (x and y attributes are used). |
p3D | : Vector of 3d points (oX, oY and oZ attributes are used). |
numberOfInlierToReachAConsensus | : The minimum number of inlier to have to consider a trial as correct. |
threshold | : The maximum error allowed between the 2d points and the reprojection of its associated 3d points by the current pose (in meter). |
ninliers | : Number of inliers found for the best solution. |
listInliers | : Vector of points (2d and 3d) that are inliers for the best solution. |
cMo | : The computed pose (best solution). |
maxNbTrials | : Maximum number of trials before considering a solution fitting the required numberOfInlierToReachAConsensus and threshold cannot be found. |
useParallelRansac | : If true, use parallel RANSAC version (if C++11 is available). |
nthreads | : Number of threads to use, if 0 the number of CPU threads will be determined. |
func | : Pointer to a function that takes in parameter a vpHomogeneousMatrix and returns true if the pose check is OK or false otherwise |
Definition at line 662 of file vpPoseRansac.cpp.
References addPoint(), CHECK_DEGENERATE_POINTS, computePose(), getRansacInliers(), getRansacNbInliers(), listP, vpPoseException::notEnoughPointError, RANSAC, vpPoint::set_x(), vpPoint::set_y(), setNbParallelRansacThreads(), setRansacFilterFlag(), setRansacMaxTrials(), setRansacNbInliersToReachConsensus(), setRansacThreshold(), setUseParallelRansac(), and vpERROR_TRACE.
|
inline |
Get the covariance matrix computed in the Virtual Visual Servoing approach.
Definition at line 269 of file vpPose.h.
References vpTRACE.
Referenced by vpKeyPoint::computePose().
|
inline |
Get the number of threads for the parallel RANSAC implementation.
|
inline |
Get the vector of points.
Definition at line 327 of file vpPose.h.
References vpColor::none.
|
inline |
Definition at line 249 of file vpPose.h.
Referenced by vpKeyPoint::computePose().
|
inline |
Definition at line 250 of file vpPose.h.
Referenced by vpKeyPoint::computePose(), and findMatch().
|
inline |
Definition at line 248 of file vpPose.h.
Referenced by findMatch().
|
inline |
void vpPose::init | ( | void | ) |
Definition at line 63 of file vpPose.cpp.
References vpMatrix::clear(), lambda, listP, NO_FILTER, npt, and residual.
void vpPose::poseDementhonNonPlan | ( | vpHomogeneousMatrix & | cMo | ) |
Compute the pose using Dementhon approach for non planar objects. This is a direct implementation of the algorithm proposed by Dementhon and Davis in their 1995 paper [13].
Definition at line 108 of file vpPoseDementhon.cpp.
References computeResidualDementhon(), vpMath::deg(), vpColVector::dotProd(), vpHomogeneousMatrix::extract(), vpException::fatalError, vpPoint::get_oX(), vpPoint::get_oY(), vpPoint::get_oZ(), listP, npt, vpMatrix::pseudoInverse(), vpPoint::set_oX(), vpPoint::set_oY(), vpPoint::set_oZ(), vpColVector::sumSquare(), and vpColVector::t().
Referenced by computePose().
void vpPose::poseDementhonPlan | ( | vpHomogeneousMatrix & | cMo | ) |
Compute the pose using Dementhon approach for planar objects this is a direct implementation of the algorithm proposed by Dementhon in his PhD.
Definition at line 421 of file vpPoseDementhon.cpp.
References calculArbreDementhon(), computeResidualDementhon(), vpMath::deg(), vpHomogeneousMatrix::extract(), vpException::fatalError, vpPoint::get_oX(), vpPoint::get_oY(), vpPoint::get_oZ(), listP, npt, vpMatrix::pseudoInverse(), vpPoint::set_oX(), vpPoint::set_oY(), vpPoint::set_oZ(), and vpColVector::t().
Referenced by computePose().
|
static |
Carries out the camera pose the image of a rectangle and the intrinsec parameters, the length on x axis is known but the proprtion of the rectangle are unknown.
This method is taken from "Markerless Tracking using Planar Structures in the Scene" by Gilles Simon. The idea is to compute the homography H giving the image point of the rectangle by associating them with the coordinates (0,0)(1,0)(1,1/s)(0,1/s) (the rectangle is on the Z=0 plane). If K is the intrinsec parameters matrix, we have s = ||Kh1||/ ||Kh2||. s gives us the proportion of the rectangle
p1,p2,p3,p4 | the image of the corners of the rectangle (respectively the image of (0,0),(lx,0),(lx,lx/s) and (0,lx/s)) (input) |
cam | the camera used (input) |
lx | the rectangle size on the x axis (input) |
cMo | the camera pose (output) |
Definition at line 564 of file vpPose.cpp.
References addPoint(), computePose(), DEMENTHON_LOWE, vpMatrix::eye(), vpCameraParameters::get_K(), vpPoint::get_x(), vpPoint::get_y(), vpMatrix::getCol(), vpHomography::HLM(), vpMatrix::pseudoInverse(), vpPoint::setWorldCoordinates(), and vpColVector::sumSquare().
void vpPose::poseLagrangeNonPlan | ( | vpHomogeneousMatrix & | cMo | ) |
Definition at line 533 of file vpPoseLagrange.cpp.
References vpException::dimensionError, vpException::divideByZeroError, vpPoint::get_oX(), vpPoint::get_oY(), vpPoint::get_oZ(), vpPoint::get_x(), vpPoint::get_y(), listP, npt, and vpColVector::sumSquare().
Referenced by computePose().
void vpPose::poseLagrangePlan | ( | vpHomogeneousMatrix & | cMo | ) |
Compute the pose of a planar object using Lagrange approach.
cMo | : Estimated pose. No initialisation is requested to estimate cMo. |
Definition at line 256 of file vpPoseLagrange.cpp.
References vpColVector::crossProd(), vpException::divideByZeroError, vpPoint::get_oX(), vpPoint::get_oY(), vpPoint::get_oZ(), vpPoint::get_x(), vpPoint::get_y(), listP, npt, and vpColVector::sumSquare().
Referenced by computePose().
void vpPose::poseLowe | ( | vpHomogeneousMatrix & | cMo | ) |
Compute the pose using the Lowe non linear approach it consider the minimization of a residual using the levenberg marquartd approach.
The approach has been proposed by D.G Lowe in 1992 paper [24].
Definition at line 262 of file vpPoseLowe.cpp.
References vpHomogeneousMatrix::extract(), vpPoint::get_oX(), vpPoint::get_oY(), vpPoint::get_oZ(), vpPoint::get_x(), vpPoint::get_y(), vpHomogeneousMatrix::insert(), and listP.
Referenced by computePose().
bool vpPose::poseRansac | ( | vpHomogeneousMatrix & | cMo, |
bool(*)(const vpHomogeneousMatrix &) | func = NULL |
||
) |
Compute the pose using the Ransac approach.
cMo | : Computed pose |
func | : Pointer to a function that takes in parameter a vpHomogeneousMatrix and returns true if the pose check is OK or false otherwise |
Definition at line 329 of file vpPoseRansac.cpp.
References addPoint(), computePose(), computeResidual(), DEMENTHON, vpMath::isNaN(), LAGRANGE, vpPoseException::notInitializedError, setCovarianceComputation(), and VIRTUAL_VS.
Referenced by computePose().
void vpPose::poseVirtualVS | ( | vpHomogeneousMatrix & | cMo | ) |
Compute the pose using virtual visual servoing approach.
This approach is described in [28].
Definition at line 56 of file vpPoseVirtualVisualServoing.cpp.
References vpMatrix::computeCovarianceMatrixVVS(), vpExponentialMap::direct(), vpPoint::get_x(), vpPoint::get_y(), vpPoint::get_Z(), vpHomogeneousMatrix::inverse(), lambda, listP, vpMatrix::pseudoInverse(), vpColVector::sumSquare(), vpForwardProjection::track(), and vpERROR_TRACE.
Referenced by computePose().
void vpPose::poseVirtualVSrobust | ( | vpHomogeneousMatrix & | cMo | ) |
Compute the pose using virtual visual servoing approach and a robust control law.
This approach is described in [7].
Definition at line 161 of file vpPoseVirtualVisualServoing.cpp.
References vpMatrix::computeCovarianceMatrix(), vpExponentialMap::direct(), vpPoint::get_x(), vpPoint::get_y(), vpPoint::get_Z(), vpArray2D< Type >::getRows(), vpHomogeneousMatrix::inverse(), lambda, listP, vpRobust::MEstimator(), vpArray2D< Type >::resize(), vpColVector::resize(), vpRobust::setMinMedianAbsoluteDeviation(), vpMath::sqr(), vpColVector::sumSquare(), vpForwardProjection::track(), vpRobust::TUKEY, and vpERROR_TRACE.
void vpPose::printPoint | ( | ) |
Definition at line 468 of file vpPose.cpp.
References vpTracker::cP, listP, vpForwardProjection::oP, vpTracker::p, and vpColVector::t().
|
inline |
Set if the covariance matrix has to be computed in the Virtual Visual Servoing approach.
flag | : True if the covariance has to be computed, false otherwise. |
Definition at line 258 of file vpPose.h.
Referenced by vpKeyPoint::computePose(), and poseRansac().
void vpPose::setDistanceToPlaneForCoplanarityTest | ( | double | d | ) |
Definition at line 171 of file vpPose.cpp.
|
inline |
Set the number of threads for the parallel RANSAC implementation.
Definition at line 306 of file vpPose.h.
Referenced by vpKeyPoint::computePose(), and findMatch().
|
inline |
Set RANSAC filter flag.
flag | : RANSAC flag to use to prefilter or perform degenerate configuration check. |
Definition at line 289 of file vpPose.h.
Referenced by vpKeyPoint::computePose(), and findMatch().
|
inline |
Definition at line 247 of file vpPose.h.
Referenced by vpKeyPoint::computePose(), and findMatch().
|
inline |
Definition at line 237 of file vpPose.h.
Referenced by vpKeyPoint::computePose(), and findMatch().
|
inline |
Definition at line 238 of file vpPose.h.
References vpException::badValue.
Referenced by vpKeyPoint::computePose(), and findMatch().
|
inline |
Set if parallel RANSAC version should be used or not (only if C++11).
Definition at line 320 of file vpPose.h.
Referenced by vpKeyPoint::computePose(), and findMatch().
|
inline |
Definition at line 227 of file vpPose.h.
References vpException::badValue.
|
protected |
parameters use for the virtual visual servoing approach
Definition at line 115 of file vpPose.h.
Referenced by init(), poseVirtualVS(), and poseVirtualVSrobust().
std::list<vpPoint> vpPose::listP |
Array of point (use here class vpPoint)
Definition at line 110 of file vpPose.h.
Referenced by addPoint(), addPoints(), clearPoint(), computeResidual(), coplanar(), displayModel(), findMatch(), init(), poseDementhonNonPlan(), poseDementhonPlan(), poseLagrangeNonPlan(), poseLagrangePlan(), poseLowe(), poseVirtualVS(), poseVirtualVSrobust(), printPoint(), and ~vpPose().
unsigned int vpPose::npt |
Number of point used in pose computation.
Definition at line 109 of file vpPose.h.
Referenced by addPoint(), addPoints(), calculArbreDementhon(), clearPoint(), computePose(), computeResidualDementhon(), coplanar(), init(), poseDementhonNonPlan(), poseDementhonPlan(), poseLagrangeNonPlan(), and poseLagrangePlan().