Example of eye-in-hand control law. We control here a real robot, the Viper S650 robot (arm with 6 degrees of freedom). The velocity is computed in the camera frame. The inverse jacobian that converts cartesian velocities in joint velocities is implemented in the robot low level controller. Visual features are the image coordinates of 4 points. The target is made of 4 dots arranged as a 10cm by 10cm square.The device used to acquire images is a firewire camera (PointGrey Flea2)
Camera extrinsic (eMc) and intrinsic parameters are retrieved from the robot low level driver that is not public.
#include <fstream>
#include <iostream>
#include <sstream>
#include <stdio.h>
#include <stdlib.h>
#include <visp3/core/vpConfig.h>
#if defined(VISP_HAVE_VIPER650) && defined(VISP_HAVE_DC1394) && defined(VISP_HAVE_X11)
#include <visp3/blob/vpDot2.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/core/vpPoint.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/robot/vpRobotViper650.h>
#include <visp3/sensor/vp1394TwoGrabber.h>
#include <visp3/vision/vpPose.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeaturePoint.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>
#define L 0.05
#ifdef ENABLE_VISP_NAMESPACE
#endif
void compute_pose(std::vector<vpPoint> &point, std::vector<vpDot2> &dot,
vpCameraParameters cam,
{
for (size_t i = 0; i < point.size(); i++) {
double x = 0, y = 0;
y);
point[i].set_x(x);
point[i].set_y(y);
}
if (init == true) {
}
else {
}
}
int main()
{
std::string username;
std::string logdirname;
logdirname = "/tmp/" + username;
try {
}
catch (...) {
std::cerr << std::endl << "ERROR:" << std::endl;
std::cerr << " Cannot create " << logdirname << std::endl;
return EXIT_FAILURE;
}
}
std::string logfilename;
logfilename = logdirname + "/log.dat";
std::ofstream flog(logfilename.c_str());
try {
robot.get_eMc(eMc);
std::cout << "Camera extrinsic parameters (eMc): \n" << eMc << std::endl;
bool reset = false;
g.open(I);
g.acquire(I);
std::vector<vpDot2> dot(4);
std::cout << "Click on the 4 dots clockwise starting from upper/left dot..." << std::endl;
for (size_t i = 0; i < dot.size(); i++) {
dot[i].setGraphics(true);
dot[i].initTracking(I);
}
robot.getCameraParameters(cam, I);
std::cout << "Camera intrinsic parameters: \n" << cam << std::endl;
for (size_t i = 0; i < dot.size(); i++)
std::vector<vpPoint> point(4);
point[0].setWorldCoordinates(-L, -L, 0);
point[1].setWorldCoordinates(L, -L, 0);
point[2].setWorldCoordinates(L, L, 0);
point[3].setWorldCoordinates(-L, L, 0);
compute_pose(point, dot, cam, cMo, true);
std::cout << "Initial camera pose (cMo): \n" << cMo << std::endl;
for (int i = 0; i < 4; i++) {
point[i].changeFrame(cMo_d, cP);
point[i].projection(cP, p);
}
for (size_t i = 0; i < dot.size(); i++)
std::cout << "\nHit CTRL-C or click in the image to stop the loop...\n" << std::flush;
for (;;) {
g.acquire(I);
try {
for (size_t i = 0; i < dot.size(); i++) {
dot[i].track(I);
}
}
catch (...) {
std::cout << "Error detected while tracking visual features.." << std::endl;
break;
}
compute_pose(point, dot, cam, cMo, false);
for (size_t i = 0; i < dot.size(); i++) {
point[i].changeFrame(cMo, cP);
p[i].set_Z(cP[2]);
}
flog << v[0] << " " << v[1] << " " << v[2] << " " << v[3] << " " << v[4] << " " << v[5] << " ";
flog << qvel[0] << " " << qvel[1] << " " << qvel[2] << " " << qvel[3] << " " << qvel[4] << " " << qvel[5] << " ";
flog << q[0] << " " << q[1] << " " << q[2] << " " << q[3] << " " << q[4] << " " << q[5] << " ";
break;
}
robot.stopMotion();
std::cout << "Display task information: " << std::endl;
flog.close();
return EXIT_SUCCESS;
}
flog.close();
std::cout <<
"Catched an exception: " << e.
getMessage() << std::endl;
return EXIT_FAILURE;
}
}
#else
int main()
{
std::cout << "You do not have an Viper 650 robot connected to your computer..." << std::endl;
return EXIT_SUCCESS;
}
#endif
Class for firewire ieee1394 video devices using libdc1394-2.x api.
@ vpVIDEO_MODE_640x480_MONO8
Generic class defining intrinsic camera parameters.
vpCameraParametersProjType
@ perspectiveProjWithDistortion
Perspective projection with distortion model.
Implementation of column vector and the associated operations.
static const vpColor blue
static const vpColor green
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
static void display(const vpImage< unsigned char > &I)
static void displayCross(const vpImage< unsigned char > &I, const vpImagePoint &ip, unsigned int size, const vpColor &color, unsigned int thickness=1)
static void flush(const vpImage< unsigned char > &I)
static void displayText(const vpImage< unsigned char > &I, const vpImagePoint &ip, const std::string &s, const vpColor &color)
error that can be emitted by ViSP classes.
const char * getMessage() const
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
Implementation of an homogeneous matrix and operations on such kind of matrices.
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
static void convertPoint(const vpCameraParameters &cam, const double &u, const double &v, double &x, double &y)
Class used for pose computation from N points (pose from point only). Some of the algorithms implemen...
void addPoint(const vpPoint &P)
@ DEMENTHON_LAGRANGE_VIRTUAL_VS
bool computePose(vpPoseMethodType method, vpHomogeneousMatrix &cMo, FuncCheckValidityPose func=nullptr)
void getVelocity(const vpRobot::vpControlFrameType frame, vpColVector &velocity)
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) VP_OVERRIDE
Control of Irisa's Viper S650 robot named Viper650.
@ STATE_VELOCITY_CONTROL
Initialize the velocity controller.
virtual vpRobotStateType setRobotState(const vpRobot::vpRobotStateType newState)
Implementation of a rotation matrix and operations on such kind of matrices.
static void display(const vpServo &s, const vpCameraParameters &cam, const vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
void setServo(const vpServoType &servo_type)
vpColVector getError() const
vpColVector computeControlLaw()
Class that consider the case of a translation vector.
@ TOOL_PTGREY_FLEA2_CAMERA