Visual Servoing Platform  version 3.6.1 under development (2024-07-27)
servoSimuSphere.cpp

Demonstration of the wireframe simulator with a simple visual servoing.

/****************************************************************************
*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2023 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Demonstration of the wireframe simulator with a simple visual servoing
*
*****************************************************************************/
#include <cmath> // std::fabs
#include <limits> // numeric_limits
#include <stdlib.h>
#include <visp3/core/vpCameraParameters.h>
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/core/vpMath.h>
#include <visp3/core/vpSphere.h>
#include <visp3/core/vpTime.h>
#include <visp3/core/vpVelocityTwistMatrix.h>
#include <visp3/gui/vpDisplayD3D.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayGTK.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/gui/vpPlot.h>
#include <visp3/io/vpImageIo.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/robot/vpSimulatorCamera.h>
#include <visp3/robot/vpWireFrameSimulator.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpGenericFeature.h>
#include <visp3/vs/vpServo.h>
#define GETOPTARGS "dhp"
#if defined(VISP_HAVE_DISPLAY) && (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
#if defined(ENABLE_VISP_NAMESPACE)
using namespace VISP_NAMESPACE_NAME;
#endif
void usage(const char *name, const char *badparam)
{
fprintf(stdout, "\n\
Demonstration of the wireframe simulator with a simple visual servoing.\n\
\n\
The visual servoing consists in bringing the camera at a desired position from the object.\n\
\n\
The visual features used to compute the pose of the camera and thus the control law are special moments computed with the sphere's parameters.\n\
\n\
SYNOPSIS\n\
%s [-d] [-p] [-h]\n",
name);
fprintf(stdout, "\n\
OPTIONS: Default\n\
-d \n\
Turn off the display.\n\
\n\
-p \n\
Turn off the plotter.\n\
\n\
-h\n\
Print the help.\n");
if (badparam)
fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
bool getOptions(int argc, const char **argv, bool &display, bool &plot)
{
const char *optarg_;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
switch (c) {
case 'd':
display = false;
break;
case 'p':
plot = false;
break;
case 'h':
usage(argv[0], nullptr);
return false;
default:
usage(argv[0], optarg_);
return false;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], nullptr);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
return false;
}
return true;
}
/*
Computes the virtual visual features corresponding to the sphere and stores
it in the generic feature.
The visual feature vector is computed thanks to the following formula : s =
{sx, sy, sz} sx = gx*h2/(sqrt(h2+1) sx = gy*h2/(sqrt(h2+1) sz = sqrt(h2+1)
with gx and gy the center of gravity of the ellipse,
with h2 = (gx²+gy²)/(4*n20*gy²+4*n02*gx²-8n11gxgy)
with n20,n02,n11 the second order centered moments of the sphere normalized by its area
(i.e., such that \f$n_{ij} = \mu_{ij}/a\f$ where \f$\mu_{ij}\f$ are the centered moments and a the area)
*/
void computeVisualFeatures(const vpSphere &sphere, vpGenericFeature &s)
{
double gx = sphere.get_x();
double gy = sphere.get_y();
double n02 = sphere.get_n02();
double n20 = sphere.get_n20();
double n11 = sphere.get_n11();
double h2;
// if (gx != 0 || gy != 0)
if (std::fabs(gx) > std::numeric_limits<double>::epsilon() || std::fabs(gy) > std::numeric_limits<double>::epsilon())
h2 = (vpMath::sqr(gx) + vpMath::sqr(gy)) /
(4 * n20 * vpMath::sqr(gy) + 4 * n02 * vpMath::sqr(gx) - 8 * n11 * gx * gy);
else
h2 = 1 / (4 * n20);
double sx = gx * h2 / (sqrt(h2 + 1));
double sy = gy * h2 / (sqrt(h2 + 1));
double sz = sqrt(h2 + 1); //(h2-(vpMath::sqr(sx)+vpMath::sqr(sy)-1))/(2*sqrt(h2));
s.set_s(sx, sy, sz);
}
/*
Computes the interaction matrix such as L = [-1/R*I3 [s]x]
with R the radius of the sphere
with I3 the 3x3 identity matrix
with [s]x the skew matrix related to s
*/
void computeInteractionMatrix(const vpGenericFeature &s, const vpSphere &sphere, vpMatrix &L)
{
L = 0;
L[0][0] = -1 / sphere.getR();
L[1][1] = -1 / sphere.getR();
L[2][2] = -1 / sphere.getR();
double s0, s1, s2;
s.get_s(s0, s1, s2);
vpTranslationVector c(s0, s1, s2);
sk = c.skew();
for (unsigned int i = 0; i < 3; i++)
for (unsigned int j = 0; j < 3; j++)
L[i][j + 3] = sk[i][j];
}
int main(int argc, const char **argv)
{
try {
bool opt_display = true;
bool opt_plot = true;
// Read the command line options
if (getOptions(argc, argv, opt_display, opt_plot) == false) {
return EXIT_FAILURE;
}
vpImage<vpRGBa> Iint(480, 640, vpRGBa(255));
vpImage<vpRGBa> Iext1(480, 640, vpRGBa(255));
vpImage<vpRGBa> Iext2(480, 640, vpRGBa(255));
#if defined(VISP_HAVE_X11)
vpDisplayX display[3];
#elif defined(HAVE_OPENCV_HIGHGUI)
vpDisplayOpenCV display[3];
#elif defined(VISP_HAVE_GDI)
vpDisplayGDI display[3];
#elif defined(VISP_HAVE_D3D9)
vpDisplayD3D display[3];
#elif defined(VISP_HAVE_GTK)
vpDisplayGTK display[3];
#endif
if (opt_display) {
// Display size is automatically defined by the image (I) size
display[0].init(Iint, 100, 100, "The internal view");
display[1].init(Iext1, 100, 100, "The first external view");
display[2].init(Iext2, 100, 100, "The second external view");
}
vpPlot *plotter = nullptr;
vpServo task;
float sampling_time = 0.020f; // Sampling period in second
robot.setSamplingTime(sampling_time);
// Since the task gain lambda is very high, we need to increase default
// max velocities
// Set initial position of the object in the camera frame
vpHomogeneousMatrix cMo(0, 0.1, 2.0, vpMath::rad(35), vpMath::rad(25), 0);
// Set desired position of the object in the camera frame
vpHomogeneousMatrix cdMo(0.0, 0.0, 0.8, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
// Set initial position of the object in the world frame
vpHomogeneousMatrix wMo(0.0, 0.0, 0, 0, 0, 0);
// Position of the camera in the world frame
wMc = wMo * cMo.inverse();
robot.setPosition(wMc);
// The sphere
vpSphere sphere(0, 0, 0, 0.15);
// Projection of the sphere
sphere.track(cMo);
// Set the current visual feature
computeVisualFeatures(sphere, s);
// Projection of the points
sphere.track(cdMo);
computeVisualFeatures(sphere, sd);
vpMatrix L(3, 6);
computeInteractionMatrix(sd, sphere, L);
sd.setInteractionMatrix(L);
task.set_cVe(cVe);
vpMatrix eJe;
robot.get_eJe(eJe);
task.set_eJe(eJe);
task.addFeature(s, sd);
task.setLambda(7);
if (opt_plot) {
plotter = new vpPlot(2, 480, 640, 750, 550, "Real time curves plotter");
plotter->setTitle(0, "Visual features error");
plotter->setTitle(1, "Camera velocities");
plotter->initGraph(0, task.getDimension());
plotter->initGraph(1, 6);
plotter->setLegend(0, 0, "error_feat_sx");
plotter->setLegend(0, 1, "error_feat_sy");
plotter->setLegend(0, 2, "error_feat_sz");
plotter->setLegend(1, 0, "vc_x");
plotter->setLegend(1, 1, "vc_y");
plotter->setLegend(1, 2, "vc_z");
plotter->setLegend(1, 3, "wc_x");
plotter->setLegend(1, 4, "wc_y");
plotter->setLegend(1, 5, "wc_z");
}
// Set the scene
// Initialize simulator frames
sim.set_fMo(wMo); // Position of the object in the world reference frame
sim.setCameraPositionRelObj(cMo); // Initial position of the object in the camera frame
sim.setDesiredCameraPosition(cdMo); // Desired position of the object in the camera frame
// Set the External camera position
vpHomogeneousMatrix camMf(0.0, 0, 3.5, vpMath::rad(0), vpMath::rad(30), 0);
// Computes the position of a camera which is fixed in the object frame
vpHomogeneousMatrix camoMf(0, 0.0, 2.5, 0, vpMath::rad(140), 0);
camoMf = camoMf * (sim.get_fMo().inverse());
// Set the parameters of the cameras (internal and external)
vpCameraParameters camera(1000, 1000, 320, 240);
int max_iter = 10;
if (opt_display) {
max_iter = 1000;
// Get the internal and external views
sim.getInternalImage(Iint);
sim.getExternalImage(Iext1);
sim.getExternalImage(Iext2, camoMf);
// Display the object frame (current and desired position)
vpDisplay::displayFrame(Iint, cMo, camera, 0.2, vpColor::none);
vpDisplay::displayFrame(Iint, cdMo, camera, 0.2, vpColor::none);
// Display the object frame the world reference frame and the camera
// frame
vpDisplay::displayFrame(Iext1, camMf * sim.get_fMo() * cMo.inverse(), camera, 0.2, vpColor::none);
vpDisplay::displayFrame(Iext1, camMf * sim.get_fMo(), camera, 0.2, vpColor::none);
vpDisplay::displayFrame(Iext1, camMf, camera, 0.2, vpColor::none);
// Display the world reference frame and the object frame
vpDisplay::displayFrame(Iext2, camoMf, camera, 0.2, vpColor::none);
vpDisplay::displayFrame(Iext2, camoMf * sim.get_fMo(), camera, 0.05, vpColor::none);
vpDisplay::displayText(Iint, 20, 20, "Click to start visual servo", vpColor::red);
std::cout << "Click on a display" << std::endl;
while (!vpDisplay::getClick(Iint, false) && !vpDisplay::getClick(Iext1, false) &&
!vpDisplay::getClick(Iext2, false)) {
};
}
// Print the task
task.print();
int iter = 0;
bool stop = false;
double t_prev, t = vpTime::measureTimeMs();
while (iter++ < max_iter && !stop) {
t_prev = t;
if (opt_display) {
}
robot.get_eJe(eJe);
task.set_eJe(eJe);
wMc = robot.getPosition();
cMo = wMc.inverse() * wMo;
sphere.track(cMo);
// Set the current visual feature
computeVisualFeatures(sphere, s);
v = task.computeControlLaw();
// Compute the position of the external view which is fixed in the
// object frame
camoMf.build(0, 0.0, 2.5, 0, vpMath::rad(150), 0);
camoMf = camoMf * (sim.get_fMo().inverse());
if (opt_plot) {
plotter->plot(0, iter, task.getError());
plotter->plot(1, iter, v);
}
if (opt_display) {
// Get the internal and external views
sim.getInternalImage(Iint);
sim.getExternalImage(Iext1);
sim.getExternalImage(Iext2, camoMf);
// Display the object frame (current and desired position)
vpDisplay::displayFrame(Iint, cMo, camera, 0.2, vpColor::none);
vpDisplay::displayFrame(Iint, cdMo, camera, 0.2, vpColor::none);
// Display the camera frame, the object frame the world reference
// frame
vpDisplay::displayFrame(Iext1, sim.getExternalCameraPosition() * sim.get_fMo() * cMo.inverse(), camera, 0.2,
// Display the world reference frame and the object frame
vpDisplay::displayFrame(Iext2, camoMf, camera, 0.2, vpColor::none);
vpDisplay::displayFrame(Iext2, camoMf * sim.get_fMo(), camera, 0.05, vpColor::none);
vpDisplay::displayText(Iint, 20, 20, "Click to stop visual servo", vpColor::red);
std::stringstream ss;
ss << "Loop time: " << t - t_prev << " ms";
vpDisplay::displayText(Iint, 40, 20, ss.str(), vpColor::red);
if (vpDisplay::getClick(Iint, false)) {
stop = true;
}
vpTime::wait(t, sampling_time * 1000); // Wait ms
}
std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
}
if (opt_plot && plotter != nullptr) {
sim.getInternalImage(Iint);
vpDisplay::displayFrame(Iint, cMo, camera, 0.2, vpColor::none);
vpDisplay::displayFrame(Iint, cdMo, camera, 0.2, vpColor::none);
vpDisplay::displayText(Iint, 20, 20, "Click to quit", vpColor::red);
if (vpDisplay::getClick(Iint)) {
stop = true;
}
delete plotter;
}
task.print();
return EXIT_SUCCESS;
}
catch (const vpException &e) {
std::cout << "Catch an exception: " << e << std::endl;
return EXIT_FAILURE;
}
}
#elif !(defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
int main()
{
std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
return EXIT_SUCCESS;
}
#else
int main()
{
std::cout << "You do not have X11, or GDI (Graphical Device Interface), or GTK functionalities to display images..."
<< std::endl;
std::cout << "Tip if you are on a unix-like system:" << std::endl;
std::cout << "- Install X11, configure again ViSP using cmake and build again this example" << std::endl;
std::cout << "Tip if you are on a windows-like system:" << std::endl;
std::cout << "- Install GDI, configure again ViSP using cmake and build again this example" << std::endl;
return EXIT_SUCCESS;
}
#endif
Generic class defining intrinsic camera parameters.
Implementation of column vector and the associated operations.
Definition: vpColVector.h:191
static const vpColor red
Definition: vpColor.h:217
static const vpColor none
Definition: vpColor.h:229
Display for windows using Direct3D 3rd party. Thus to enable this class Direct3D should be installed....
Definition: vpDisplayD3D.h:106
Display for windows using GDI (available on any windows 32 platform).
Definition: vpDisplayGDI.h:130
The vpDisplayGTK allows to display image using the GTK 3rd party library. Thus to enable this class G...
Definition: vpDisplayGTK.h:133
The vpDisplayOpenCV allows to display image using the OpenCV library. Thus to enable this class OpenC...
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
Definition: vpDisplayX.h:135
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
static void display(const vpImage< unsigned char > &I)
static void displayFrame(const vpImage< unsigned char > &I, const vpHomogeneousMatrix &cMo, const vpCameraParameters &cam, double size, const vpColor &color=vpColor::none, unsigned int thickness=1, const vpImagePoint &offset=vpImagePoint(0, 0), const std::string &frameName="", const vpColor &textColor=vpColor::black, const vpImagePoint &textOffset=vpImagePoint(15, 15))
static void flush(const vpImage< unsigned char > &I)
static void setWindowPosition(const vpImage< unsigned char > &I, int winx, int winy)
static void displayText(const vpImage< unsigned char > &I, const vpImagePoint &ip, const std::string &s, const vpColor &color)
error that can be emitted by ViSP classes.
Definition: vpException.h:60
void track(const vpHomogeneousMatrix &cMo)
Class that enables to define a feature or a set of features which are not implemented in ViSP as a sp...
void get_s(vpColVector &s) const
get the value of all the features.
void set_s(const vpColVector &s)
set the value of all the features.
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
static double rad(double deg)
Definition: vpMath.h:129
static double sqr(double x)
Definition: vpMath.h:203
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:169
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:70
This class enables real time drawing of 2D or 3D graphics. An instance of the class open a window whi...
Definition: vpPlot.h:112
void initGraph(unsigned int graphNum, unsigned int curveNbr)
Definition: vpPlot.cpp:203
void setLegend(unsigned int graphNum, unsigned int curveNum, const std::string &legend)
Definition: vpPlot.cpp:552
void plot(unsigned int graphNum, unsigned int curveNum, double x, double y)
Definition: vpPlot.cpp:270
void setTitle(unsigned int graphNum, const std::string &title)
Definition: vpPlot.cpp:510
Definition: vpRGBa.h:65
void get_eJe(vpMatrix &eJe) VP_OVERRIDE
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) VP_OVERRIDE
@ CAMERA_FRAME
Definition: vpRobot.h:84
void setMaxRotationVelocity(double maxVr)
Definition: vpRobot.cpp:261
void setMaxTranslationVelocity(double maxVt)
Definition: vpRobot.cpp:240
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:380
@ EYEINHAND_L_cVe_eJe
Definition: vpServo.h:168
unsigned int getDimension() const
Definition: vpServo.cpp:366
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:331
void set_cVe(const vpVelocityTwistMatrix &cVe_)
Definition: vpServo.h:1038
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:171
void setLambda(double c)
Definition: vpServo.h:986
void set_eJe(const vpMatrix &eJe_)
Definition: vpServo.h:1101
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:134
vpColVector getError() const
Definition: vpServo.h:510
vpColVector computeControlLaw()
Definition: vpServo.cpp:705
@ DESIRED
Definition: vpServo.h:208
Class that defines the simplest robot: a free flying camera.
Class that defines a 3D sphere in the object frame and allows forward projection of a 3D sphere in th...
Definition: vpSphere.h:80
double get_n02() const
Definition: vpSphere.h:106
double get_y() const
Definition: vpSphere.h:102
double get_n11() const
Definition: vpSphere.h:105
double get_x() const
Definition: vpSphere.h:101
double getR() const
Definition: vpSphere.h:111
double get_n20() const
Definition: vpSphere.h:104
Class that consider the case of a translation vector.
Implementation of a wire frame simulator. Compared to the vpSimulator class, it does not require thir...
vpHomogeneousMatrix getExternalCameraPosition() const
void setCameraPositionRelObj(const vpHomogeneousMatrix &cMo_)
void getInternalImage(vpImage< unsigned char > &I)
void initScene(const vpSceneObject &obj, const vpSceneDesiredObject &desiredObject)
void setExternalCameraPosition(const vpHomogeneousMatrix &cam_Mf)
void set_fMo(const vpHomogeneousMatrix &fMo_)
vpHomogeneousMatrix get_fMo() const
void setDesiredCameraPosition(const vpHomogeneousMatrix &cdMo_)
void setInternalCameraParameters(const vpCameraParameters &cam)
void setExternalCameraParameters(const vpCameraParameters &cam)
@ SPHERE
A 15cm radius sphere.
void getExternalImage(vpImage< unsigned char > &I)
VISP_EXPORT int wait(double t0, double t)
VISP_EXPORT double measureTimeMs()