Visual Servoing Platform  version 3.6.1 under development (2024-05-09)
servoAfma62DhalfCamVelocity.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See https://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * tests the control law
33  * eye-in-hand control
34  * velocity computed in the camera frame
35  *
36 *****************************************************************************/
37 
60 #include <cmath> // std::fabs
61 #include <limits> // numeric_limits
62 #include <stdlib.h>
63 #include <visp3/core/vpConfig.h>
64 #include <visp3/core/vpDebug.h> // Debug trace
65 #if (defined(VISP_HAVE_AFMA6) && defined(VISP_HAVE_DC1394))
66 
67 #include <visp3/core/vpDisplay.h>
68 #include <visp3/core/vpImage.h>
69 #include <visp3/core/vpImagePoint.h>
70 #include <visp3/gui/vpDisplayGTK.h>
71 #include <visp3/gui/vpDisplayOpenCV.h>
72 #include <visp3/gui/vpDisplayX.h>
73 #include <visp3/io/vpImageIo.h>
74 #include <visp3/sensor/vp1394TwoGrabber.h>
75 
76 #include <visp3/core/vpHomogeneousMatrix.h>
77 #include <visp3/core/vpLine.h>
78 #include <visp3/core/vpMath.h>
79 #include <visp3/vision/vpPose.h>
80 #include <visp3/visual_features/vpFeatureBuilder.h>
81 #include <visp3/visual_features/vpFeatureDepth.h>
82 #include <visp3/visual_features/vpFeatureLine.h>
83 #include <visp3/visual_features/vpFeaturePoint.h>
84 #include <visp3/visual_features/vpGenericFeature.h>
85 #include <visp3/vs/vpServo.h>
86 
87 #include <visp3/robot/vpRobotAfma6.h>
88 
89 // Exception
90 #include <visp3/core/vpException.h>
91 #include <visp3/vs/vpServoDisplay.h>
92 
93 #include <visp3/blob/vpDot2.h>
94 #include <visp3/core/vpHomogeneousMatrix.h>
95 #include <visp3/core/vpPoint.h>
96 
97 int main()
98 {
99  try {
101 
105  g.open(I);
106 
107  g.acquire(I);
108 
109 #ifdef VISP_HAVE_X11
110  vpDisplayX display(I, 100, 100, "Current image");
111 #elif defined(HAVE_OPENCV_HIGHGUI)
112  vpDisplayOpenCV display(I, 100, 100, "Current image");
113 #elif defined(VISP_HAVE_GTK)
114  vpDisplayGTK display(I, 100, 100, "Current image");
115 #endif
116 
118  vpDisplay::flush(I);
119 
120  vpServo task;
121 
122  vpRobotAfma6 robot;
123  // robot.move("zero.pos") ;
124 
125  vpCameraParameters cam;
126  // Update camera parameters
127  robot.getCameraParameters(cam, I);
128 
129  std::cout << std::endl;
130  std::cout << "-------------------------------------------------------" << std::endl;
131  std::cout << " Test program for vpServo " << std::endl;
132  std::cout << " Eye-in-hand task control, velocity computed in the camera frame" << std::endl;
133  std::cout << " Simulation " << std::endl;
134  std::cout << " task : servo a line " << std::endl;
135  std::cout << "-------------------------------------------------------" << std::endl;
136  std::cout << std::endl;
137 
138  int nbline = 4;
139  int nbpoint = 4;
140 
141  vpTRACE("sets the desired position of the visual feature ");
142  vpPoint pointd[nbpoint]; // position of the fours corners
143  vpPoint pointcd; // position of the center of the square
144  vpFeaturePoint pd;
145 
146  double L = 0.05;
147  pointd[0].setWorldCoordinates(L, -L, 0);
148  pointd[1].setWorldCoordinates(L, L, 0);
149  pointd[2].setWorldCoordinates(-L, L, 0);
150  pointd[3].setWorldCoordinates(-L, -L, 0);
151 
152  // The coordinates in the object frame of the point used as a feature ie
153  // the center of the square
154  pointcd.setWorldCoordinates(0, 0, 0);
155 
156  // The desired homogeneous matrix.
157  vpHomogeneousMatrix cMod(0, 0, 0.4, 0, 0, vpMath::rad(10));
158 
159  pointd[0].project(cMod);
160  pointd[1].project(cMod);
161  pointd[2].project(cMod);
162  pointd[3].project(cMod);
163 
164  pointcd.project(cMod);
165 
166  vpFeatureBuilder::create(pd, pointcd);
167 
168  vpTRACE("Initialization of the tracking");
169  vpMeLine line[nbline];
170  vpPoint point[nbpoint];
171  int i;
172 
173  vpMe me;
174  me.setRange(10);
175  me.setPointsToTrack(100);
177  me.setThreshold(15);
178  me.setSampleStep(10);
179 
180  // Initialize the tracking. Define the four lines to track
181  for (i = 0; i < nbline; i++) {
182  line[i].setMe(&me);
183 
184  line[i].initTracking(I);
185  line[i].track(I);
186  }
187 
188  // Compute the position of the four corners. The goal is to
189  // compute the pose
190  vpImagePoint ip;
191  for (i = 0; i < nbline; i++) {
192  double x = 0, y = 0;
193 
194  if (!vpMeLine::intersection(line[i % nbline], line[(i + 1) % nbline], ip)) {
195  return EXIT_FAILURE;
196  }
197 
199 
200  point[i].set_x(x);
201  point[i].set_y(y);
202  }
203 
204  // Compute the pose cMo
205  vpPose pose;
206  pose.clearPoint();
208 
209  point[0].setWorldCoordinates(L, -L, 0);
210  point[1].setWorldCoordinates(L, L, 0);
211  point[2].setWorldCoordinates(-L, L, 0);
212  point[3].setWorldCoordinates(-L, -L, 0);
213 
214  for (i = 0; i < nbline; i++) {
215  pose.addPoint(point[i]); // and added to the pose computation point list
216  }
217 
218  // Pose by Dementhon or Lagrange provides an initialization of the non linear virtual visual-servoing pose estimation
220 
221  vpTRACE("sets the current position of the visual feature ");
222 
223  // The first features are the position in the camera frame x and y of the
224  // square center
225  vpPoint pointc; // The current position of the center of the square
226  double xc = (point[0].get_x() + point[2].get_x()) / 2;
227  double yc = (point[0].get_y() + point[2].get_y()) / 2;
228  pointc.set_x(xc);
229  pointc.set_y(yc);
230  vpFeaturePoint p;
231  pointc.project(cMo);
232  vpFeatureBuilder::create(p, pointc);
233 
234  // The second feature is the depth of the current square center relative
235  // to the depth of the desired square center.
236  vpFeatureDepth logZ;
237  logZ.buildFrom(pointc.get_x(), pointc.get_y(), pointc.get_Z(), log(pointc.get_Z() / pointcd.get_Z()));
238 
239  // The last three features are the rotations thetau between the current
240  // pose and the desired pose.
241  vpHomogeneousMatrix cdMc;
242  cdMc = cMod * cMo.inverse();
244  tu.buildFrom(cdMc);
245 
246  vpTRACE("define the task");
247  vpTRACE("\t we want an eye-in-hand control law");
248  vpTRACE("\t robot is controlled in the camera frame");
251 
252  vpTRACE("\t we want to see a point on a point..");
253  std::cout << std::endl;
254  task.addFeature(p, pd);
255  task.addFeature(logZ);
256  task.addFeature(tu);
257 
258  vpTRACE("\t set the gain");
259  task.setLambda(0.2);
260 
261  vpTRACE("Display task information ");
262  task.print();
263 
265 
266  unsigned int iter = 0;
267  vpTRACE("\t loop");
268  vpColVector v;
269  vpImage<vpRGBa> Ic;
270  double lambda_av = 0.05;
271  double alpha = 0.05;
272  double beta = 3;
273 
274  for (;;) {
275  std::cout << "---------------------------------------------" << iter << std::endl;
276 
277  try {
278  g.acquire(I);
280 
281  pose.clearPoint();
282 
283  // Track the lines and find the current position of the corners
284  for (i = 0; i < nbline; i++) {
285  line[i].track(I);
286 
287  line[i].display(I, vpColor::green);
288 
289  double x = 0, y = 0;
290 
291  if (!vpMeLine::intersection(line[i % nbline], line[(i + 1) % nbline], ip)) {
292  return EXIT_FAILURE;
293  }
294 
296 
297  point[i].set_x(x);
298  point[i].set_y(y);
299 
300  pose.addPoint(point[i]);
301  }
302 
303  // Compute the pose
304  pose.computePose(vpPose::VIRTUAL_VS, cMo);
305 
306  // Update the two first features x and y (position of the square
307  // center)
308  xc = (point[0].get_x() + point[2].get_x()) / 2;
309  yc = (point[0].get_y() + point[2].get_y()) / 2;
310  pointc.set_x(xc);
311  pointc.set_y(yc);
312  pointc.project(cMo);
313  vpFeatureBuilder::create(p, pointc);
314  // Print the current and the desired position of the center of the
315  // square Print the desired position of the four corners
316  p.display(cam, I, vpColor::green);
317  pd.display(cam, I, vpColor::red);
318  for (i = 0; i < nbpoint; i++)
319  pointd[i].display(I, cam, vpColor::red);
320 
321  // Update the second feature
322  logZ.buildFrom(pointc.get_x(), pointc.get_y(), pointc.get_Z(), log(pointc.get_Z() / pointcd.get_Z()));
323 
324  // Update the last three features
325  cdMc = cMod * cMo.inverse();
326  tu.buildFrom(cdMc);
327 
328  // Adaptive gain
329  double gain;
330  {
331  if (std::fabs(alpha) <= std::numeric_limits<double>::epsilon())
332  gain = lambda_av;
333  else {
334  gain = alpha * exp(-beta * (task.getError()).sumSquare()) + lambda_av;
335  }
336  }
337 
338  task.setLambda(gain);
339 
340  v = task.computeControlLaw();
341 
342  vpDisplay::flush(I);
343  std::cout << v.sumSquare() << std::endl;
344  if (iter == 0)
346  if (v.sumSquare() > 0.5) {
347  v = 0;
349  robot.stopMotion();
351  }
352 
354 
355  }
356  catch (...) {
357  v = 0;
359  robot.stopMotion();
360  exit(1);
361  }
362 
363  vpTRACE("\t\t || s - s* || = %f ", (task.getError()).sumSquare());
364  iter++;
365  }
366 
367  vpTRACE("Display task information ");
368  task.print();
369  return EXIT_SUCCESS;
370  }
371  catch (const vpException &e) {
372  std::cout << "Test failed with exception: " << e << std::endl;
373  return EXIT_FAILURE;
374  }
375 }
376 
377 #else
378 int main()
379 {
380  std::cout << "You do not have an afma6 robot connected to your computer..." << std::endl;
381  return EXIT_SUCCESS;
382 }
383 
384 #endif
Class for firewire ieee1394 video devices using libdc1394-2.x api.
void acquire(vpImage< unsigned char > &I)
void setVideoMode(vp1394TwoVideoModeType videomode)
void setFramerate(vp1394TwoFramerateType fps)
void open(vpImage< unsigned char > &I)
Generic class defining intrinsic camera parameters.
Implementation of column vector and the associated operations.
Definition: vpColVector.h:163
double sumSquare() const
static const vpColor red
Definition: vpColor.h:211
static const vpColor green
Definition: vpColor.h:214
The vpDisplayGTK allows to display image using the GTK 3rd party library. Thus to enable this class G...
Definition: vpDisplayGTK.h:128
The vpDisplayOpenCV allows to display image using the OpenCV library. Thus to enable this class OpenC...
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
Definition: vpDisplayX.h:128
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
static void display(const vpImage< unsigned char > &I)
static void flush(const vpImage< unsigned char > &I)
error that can be emitted by ViSP classes.
Definition: vpException.h:59
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
Class that defines a 3D point visual feature which is composed by one parameters that is that defin...
void buildFrom(double x, double y, double Z, double LogZoverZstar)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
void display(const vpCameraParameters &cam, const vpImage< unsigned char > &I, const vpColor &color=vpColor::green, unsigned int thickness=1) const vp_override
Class that defines a 3D visual feature from a axis/angle parametrization that represent the rotatio...
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
void buildFrom(const vpTranslationVector &t, const vpRotationMatrix &R)
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:82
static double rad(double deg)
Definition: vpMath.h:127
Class that tracks in an image a line moving edges.
Definition: vpMeLine.h:147
void display(const vpImage< unsigned char > &I, const vpColor &color, unsigned int thickness=1)
Definition: vpMeLine.cpp:192
void track(const vpImage< unsigned char > &I)
Definition: vpMeLine.cpp:662
static bool intersection(const vpMeLine &line1, const vpMeLine &line2, vpImagePoint &ip)
Definition: vpMeLine.cpp:845
void initTracking(const vpImage< unsigned char > &I)
Definition: vpMeLine.cpp:197
void setMe(vpMe *me)
Definition: vpMeTracker.h:278
Definition: vpMe.h:124
void setPointsToTrack(const int &points_to_track)
Definition: vpMe.h:422
void setRange(const unsigned int &range)
Definition: vpMe.h:429
void setLikelihoodThresholdType(const vpLikelihoodThresholdType likelihood_threshold_type)
Definition: vpMe.h:519
void setThreshold(const double &threshold)
Definition: vpMe.h:480
void setSampleStep(const double &sample_step)
Definition: vpMe.h:436
@ NORMALIZED_THRESHOLD
Definition: vpMe.h:135
static void convertPoint(const vpCameraParameters &cam, const double &u, const double &v, double &x, double &y)
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:77
void set_x(double x)
Set the point x coordinate in the image plane.
Definition: vpPoint.cpp:504
double get_y() const
Get the point y coordinate in the image plane.
Definition: vpPoint.cpp:465
double get_x() const
Get the point x coordinate in the image plane.
Definition: vpPoint.cpp:463
double get_Z() const
Get the point cZ coordinate in the camera frame.
Definition: vpPoint.cpp:449
void setWorldCoordinates(double oX, double oY, double oZ)
Definition: vpPoint.cpp:110
void set_y(double y)
Set the point y coordinate in the image plane.
Definition: vpPoint.cpp:506
Class used for pose computation from N points (pose from point only). Some of the algorithms implemen...
Definition: vpPose.h:78
void addPoint(const vpPoint &P)
Definition: vpPose.cpp:93
@ DEMENTHON_LAGRANGE_VIRTUAL_VS
Definition: vpPose.h:99
@ VIRTUAL_VS
Definition: vpPose.h:93
void clearPoint()
Definition: vpPose.cpp:86
bool computePose(vpPoseMethodType method, vpHomogeneousMatrix &cMo, bool(*func)(const vpHomogeneousMatrix &)=nullptr)
Definition: vpPose.cpp:340
Control of Irisa's gantry robot named Afma6.
Definition: vpRobotAfma6.h:209
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) vp_override
@ CAMERA_FRAME
Definition: vpRobot.h:82
@ STATE_VELOCITY_CONTROL
Initialize the velocity controller.
Definition: vpRobot.h:65
virtual vpRobotStateType setRobotState(const vpRobot::vpRobotStateType newState)
Definition: vpRobot.cpp:198
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:378
@ EYEINHAND_CAMERA
Definition: vpServo.h:155
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:329
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:169
void setLambda(double c)
Definition: vpServo.h:976
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:132
vpColVector getError() const
Definition: vpServo.h:504
@ PSEUDO_INVERSE
Definition: vpServo.h:229
vpColVector computeControlLaw()
Definition: vpServo.cpp:703
@ CURRENT
Definition: vpServo.h:196
#define vpTRACE
Definition: vpDebug.h:405
void display(vpImage< unsigned char > &I, const std::string &title)
Display a gray-scale image.