Visual Servoing Platform  version 3.6.1 under development (2024-12-17)
servoAfma62DhalfCamVelocity.cpp

Example of eye-in-hand control law. We control here a real robot, the Afma6 robot (cartesian robot, with 6 degrees of freedom). The velocity is computed in the camera frame. Visual features are given thanks to four lines and are the x and y coordinates of the rectangle center, log(Z/Z*) the current depth relative to the desired depth and the thetau rotations.

/*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2024 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* tests the control law
* eye-in-hand control
* velocity computed in the camera frame
*/
#include <iostream>
#include <visp3/core/vpConfig.h>
#if defined(VISP_HAVE_AFMA6) && defined(VISP_HAVE_REALSENSE2) && defined(VISP_HAVE_DISPLAY)
#include <visp3/core/vpImage.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/gui/vpDisplayFactory.h>
#include <visp3/sensor/vpRealSense2.h>
#include <visp3/blob/vpDot2.h>
#include <visp3/robot/vpRobotAfma6.h>
#include <visp3/vision/vpPose.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeatureDepth.h>
#include <visp3/visual_features/vpFeaturePoint.h>
#include <visp3/visual_features/vpFeatureThetaU.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>
// Define the object CAD model
// Here we consider 4 black blobs whose centers are located on the corners of a square.
#define L 0.06 // To deal with a 12cm by 12cm square
int main()
{
#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif
try {
rs2::config config;
unsigned int width = 640, height = 480, fps = 60;
config.enable_stream(RS2_STREAM_COLOR, width, height, RS2_FORMAT_RGBA8, fps);
config.enable_stream(RS2_STREAM_DEPTH, width, height, RS2_FORMAT_Z16, fps);
config.enable_stream(RS2_STREAM_INFRARED, width, height, RS2_FORMAT_Y8, fps);
rs.open(config);
// Warm up camera
for (size_t i = 0; i < 10; ++i) {
rs.acquire(I);
}
std::shared_ptr<vpDisplay> d = vpDisplayFactory::createDisplay(I, 100, 100, "Current image");
vpRobotAfma6 robot;
// Load the end-effector to camera frame transformation obtained
// using a camera intrinsic model with distortion
// Get camera intrinsics
robot.getCameraParameters(cam, I);
std::cout << "-------------------------------------------------------" << std::endl;
std::cout << " Test program for vpServo " << std::endl;
std::cout << " Eye-in-hand task control, velocity computed in the camera frame" << std::endl;
std::cout << " Simulation " << std::endl;
std::cout << " task : servo a line " << std::endl;
std::cout << "-------------------------------------------------------" << std::endl;
int nbline = 4;
int nbpoint = 4;
vpTRACE("sets the desired position of the visual feature ");
vpPoint pointd[nbpoint]; // position of the fours corners
vpPoint pointcd; // position of the center of the square
pointd[0].setWorldCoordinates(+L, -L, 0);
pointd[1].setWorldCoordinates(+L, +L, 0);
pointd[2].setWorldCoordinates(-L, +L, 0);
pointd[3].setWorldCoordinates(-L, -L, 0);
// The coordinates in the object frame of the point used as a feature ie
// the center of the square
pointcd.setWorldCoordinates(0, 0, 0);
// The desired homogeneous matrix.
vpHomogeneousMatrix cd_M_o(0, 0, 0.4, 0, 0, vpMath::rad(10));
pointd[0].project(cd_M_o);
pointd[1].project(cd_M_o);
pointd[2].project(cd_M_o);
pointd[3].project(cd_M_o);
pointcd.project(cd_M_o);
vpFeatureBuilder::create(s_pd, pointcd);
// Tracking initialization
vpMeLine line[nbline];
vpPoint point[nbpoint];
vpMe me;
me.setRange(10);
me.setThreshold(15);
me.setSampleStep(10);
// Initialize the tracking. Define the four lines to track
for (int i = 0; i < nbline; ++i) {
line[i].setMe(&me);
line[i].initTracking(I);
line[i].track(I);
}
// Compute the position of the four corners. The goal is to compute the pose
for (int i = 0; i < nbline; ++i) {
double x = 0, y = 0;
if (!vpMeLine::intersection(line[i % nbline], line[(i + 1) % nbline], ip)) {
return EXIT_FAILURE;
}
point[i].set_x(x);
point[i].set_y(y);
}
// Compute the pose c_M_o
vpPose pose;
pose.clearPoint();
point[0].setWorldCoordinates(+L, -L, 0);
point[1].setWorldCoordinates(+L, +L, 0);
point[2].setWorldCoordinates(-L, +L, 0);
point[3].setWorldCoordinates(-L, -L, 0);
for (int i = 0; i < nbline; ++i) {
pose.addPoint(point[i]); // and added to the pose computation point list
}
// Pose by Dementhon or Lagrange provides an initialization of the non linear virtual visual-servoing pose estimation
// The first features are the position in the camera frame x and y of the square center
vpPoint pointc; // The current position of the center of the square
double xc = (point[0].get_x() + point[2].get_x()) / 2;
double yc = (point[0].get_y() + point[2].get_y()) / 2;
pointc.set_x(xc);
pointc.set_y(yc);
// Sets the current position of the visual feature
pointc.project(c_M_o);
// The second feature is the depth of the current square center relative
// to the depth of the desired square center.
s_logZ.buildFrom(pointc.get_x(), pointc.get_y(), pointc.get_Z(), log(pointc.get_Z() / pointcd.get_Z()));
// The last three features are the rotations thetau between the current
// pose and the desired pose.
cd_M_c = cd_M_o * c_M_o.inverse();
s_tu.buildFrom(cd_M_c);
// Define the task
// - we want an eye-in-hand control law
// - robot is controlled in the camera frame
vpServo task;
// - we want to see a point on a point
task.addFeature(s_p, s_pd);
task.addFeature(s_logZ);
task.addFeature(s_tu);
// - set the gain
vpAdaptiveGain lambda(1.5, 0.4, 30); // lambda(0)=4, lambda(oo)=0.4 and lambda'(0)=30
task.setLambda(lambda);
// - display task information ");
task.print();
bool quit = false;
while (!quit) {
rs.acquire(I);
pose.clearPoint();
// Track the lines and find the current position of the corners
for (int i = 0; i < nbline; ++i) {
line[i].track(I);
line[i].display(I, vpColor::green);
double x = 0, y = 0;
if (!vpMeLine::intersection(line[i % nbline], line[(i + 1) % nbline], ip)) {
return EXIT_FAILURE;
}
point[i].set_x(x);
point[i].set_y(y);
pose.addPoint(point[i]);
}
// Compute the pose
// Update the two first features x and y (position of the square center)
xc = (point[0].get_x() + point[2].get_x()) / 2;
yc = (point[0].get_y() + point[2].get_y()) / 2;
pointc.set_x(xc);
pointc.set_y(yc);
pointc.project(c_M_o);
// Print the current and the desired position of the center of the
// square Print the desired position of the four corners
s_p.display(cam, I, vpColor::green);
s_pd.display(cam, I, vpColor::red);
for (int i = 0; i < nbpoint; ++i) {
pointd[i].display(I, cam, vpColor::red);
}
// Update the second feature
s_logZ.buildFrom(pointc.get_x(), pointc.get_y(), pointc.get_Z(), log(pointc.get_Z() / pointcd.get_Z()));
// Update the last three features
cd_M_c = cd_M_o * c_M_o.inverse();
s_tu.buildFrom(cd_M_c);
vpDisplay::displayText(I, 20, 20, "Click to quit...", vpColor::red);
if (vpDisplay::getClick(I, false)) {
quit = true;
}
}
// Display task information
task.print();
return EXIT_SUCCESS;
}
catch (const vpException &e) {
std::cout << "Visual servo failed with exception: " << e << std::endl;
return EXIT_FAILURE;
}
}
#else
int main()
{
std::cout << "You do not have an afma6 robot connected to your computer..." << std::endl;
return EXIT_SUCCESS;
}
#endif
Adaptive gain computation.
@ TOOL_INTEL_D435_CAMERA
Definition: vpAfma6.h:131
Generic class defining intrinsic camera parameters.
@ perspectiveProjWithDistortion
Perspective projection with distortion model.
Implementation of column vector and the associated operations.
Definition: vpColVector.h:191
static const vpColor red
Definition: vpColor.h:217
static const vpColor green
Definition: vpColor.h:220
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
static void display(const vpImage< unsigned char > &I)
static void flush(const vpImage< unsigned char > &I)
static void displayText(const vpImage< unsigned char > &I, const vpImagePoint &ip, const std::string &s, const vpColor &color)
error that can be emitted by ViSP classes.
Definition: vpException.h:60
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpImagePoint &t)
Class that defines a 3D point visual feature which is composed by one parameters that is that defin...
vpFeatureDepth & buildFrom(const double &x, const double &y, const double &Z, const double &LogZoverZstar)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
void display(const vpCameraParameters &cam, const vpImage< unsigned char > &I, const vpColor &color=vpColor::green, unsigned int thickness=1) const VP_OVERRIDE
Class that defines a 3D visual feature from a axis/angle parametrization that represent the rotatio...
vpFeatureThetaU & buildFrom(const vpThetaUVector &tu)
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:82
static double rad(double deg)
Definition: vpMath.h:129
Class that tracks in an image a line moving edges.
Definition: vpMeLine.h:152
void display(const vpImage< unsigned char > &I, const vpColor &color, unsigned int thickness=1)
Definition: vpMeLine.cpp:194
void track(const vpImage< unsigned char > &I)
Definition: vpMeLine.cpp:673
static bool intersection(const vpMeLine &line1, const vpMeLine &line2, vpImagePoint &ip)
Definition: vpMeLine.cpp:856
void initTracking(const vpImage< unsigned char > &I)
Definition: vpMeLine.cpp:199
void setMe(vpMe *me)
Definition: vpMeTracker.h:260
Definition: vpMe.h:134
void setPointsToTrack(const int &points_to_track)
Definition: vpMe.h:408
void setRange(const unsigned int &range)
Definition: vpMe.h:415
void setLikelihoodThresholdType(const vpLikelihoodThresholdType likelihood_threshold_type)
Definition: vpMe.h:505
void setThreshold(const double &threshold)
Definition: vpMe.h:466
void setSampleStep(const double &sample_step)
Definition: vpMe.h:422
@ NORMALIZED_THRESHOLD
Definition: vpMe.h:145
static void convertPoint(const vpCameraParameters &cam, const double &u, const double &v, double &x, double &y)
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:79
void set_x(double x)
Set the point x coordinate in the image plane.
Definition: vpPoint.cpp:468
double get_y() const
Get the point y coordinate in the image plane.
Definition: vpPoint.cpp:426
double get_x() const
Get the point x coordinate in the image plane.
Definition: vpPoint.cpp:424
double get_Z() const
Get the point cZ coordinate in the camera frame.
Definition: vpPoint.cpp:410
void display(const vpImage< unsigned char > &I, const vpCameraParameters &cam, const vpColor &color=vpColor::green, unsigned int thickness=1) VP_OVERRIDE
Definition: vpPoint.cpp:384
void setWorldCoordinates(double oX, double oY, double oZ)
Definition: vpPoint.cpp:113
void set_y(double y)
Set the point y coordinate in the image plane.
Definition: vpPoint.cpp:470
Class used for pose computation from N points (pose from point only). Some of the algorithms implemen...
Definition: vpPose.h:77
void addPoint(const vpPoint &P)
Definition: vpPose.cpp:96
@ DEMENTHON_LAGRANGE_VIRTUAL_VS
Definition: vpPose.h:98
@ VIRTUAL_VS
Definition: vpPose.h:92
bool computePose(vpPoseMethodType method, vpHomogeneousMatrix &cMo, FuncCheckValidityPose func=nullptr)
Definition: vpPose.cpp:385
void clearPoint()
Definition: vpPose.cpp:89
void acquire(vpImage< unsigned char > &grey, double *ts=nullptr)
bool open(const rs2::config &cfg=rs2::config())
Control of Irisa's gantry robot named Afma6.
Definition: vpRobotAfma6.h:212
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) VP_OVERRIDE
@ CAMERA_FRAME
Definition: vpRobot.h:84
@ STATE_VELOCITY_CONTROL
Initialize the velocity controller.
Definition: vpRobot.h:67
virtual vpRobotStateType setRobotState(const vpRobot::vpRobotStateType newState)
Definition: vpRobot.cpp:202
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:380
@ EYEINHAND_CAMERA
Definition: vpServo.h:161
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:331
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:171
void setLambda(double c)
Definition: vpServo.h:986
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:134
@ PSEUDO_INVERSE
Definition: vpServo.h:235
vpColVector computeControlLaw()
Definition: vpServo.cpp:705
@ CURRENT
Definition: vpServo.h:202
std::shared_ptr< vpDisplay > createDisplay()
Return a smart pointer vpDisplay specialization if a GUI library is available or nullptr otherwise.