Example of eye-in-hand control law. We control here a real robot, the Afma6 robot (cartesian robot, with 6 degrees of freedom). The velocity is computed in the camera frame. Visual features are given thanks to four lines and are the x and y coordinates of the rectangle center, log(Z/Z*) the current depth relative to the desired depth and the thetau rotations.
#include <iostream>
#include <visp3/core/vpConfig.h>
#if defined(VISP_HAVE_AFMA6) && defined(VISP_HAVE_REALSENSE2) && defined(VISP_HAVE_DISPLAY)
#include <visp3/core/vpImage.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/gui/vpDisplayFactory.h>
#include <visp3/sensor/vpRealSense2.h>
#include <visp3/blob/vpDot2.h>
#include <visp3/robot/vpRobotAfma6.h>
#include <visp3/vision/vpPose.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeatureDepth.h>
#include <visp3/visual_features/vpFeaturePoint.h>
#include <visp3/visual_features/vpFeatureThetaU.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>
#define L 0.06
int main()
{
#ifdef ENABLE_VISP_NAMESPACE
#endif
try {
rs2::config config;
unsigned int width = 640, height = 480, fps = 60;
config.enable_stream(RS2_STREAM_COLOR, width, height, RS2_FORMAT_RGBA8, fps);
config.enable_stream(RS2_STREAM_DEPTH, width, height, RS2_FORMAT_Z16, fps);
config.enable_stream(RS2_STREAM_INFRARED, width, height, RS2_FORMAT_Y8, fps);
for (size_t i = 0; i < 10; ++i) {
}
robot.getCameraParameters(cam, I);
std::cout << "-------------------------------------------------------" << std::endl;
std::cout << " Test program for vpServo " << std::endl;
std::cout << " Eye-in-hand task control, velocity computed in the camera frame" << std::endl;
std::cout << " Simulation " << std::endl;
std::cout << " task : servo a line " << std::endl;
std::cout << "-------------------------------------------------------" << std::endl;
int nbline = 4;
int nbpoint = 4;
vpTRACE("sets the desired position of the visual feature ");
for (int i = 0; i < nbline; ++i) {
}
for (int i = 0; i < nbline; ++i) {
double x = 0, y = 0;
return EXIT_FAILURE;
}
}
for (int i = 0; i < nbline; ++i) {
}
double xc = (point[0].
get_x() + point[2].
get_x()) / 2;
double yc = (point[0].
get_y() + point[2].
get_y()) / 2;
bool quit = false;
while (!quit) {
for (int i = 0; i < nbline; ++i) {
double x = 0, y = 0;
return EXIT_FAILURE;
}
}
for (int i = 0; i < nbpoint; ++i) {
}
quit = true;
}
}
return EXIT_SUCCESS;
}
std::cout << "Visual servo failed with exception: " << e << std::endl;
return EXIT_FAILURE;
}
}
#else
int main()
{
std::cout << "You do not have an afma6 robot connected to your computer..." << std::endl;
return EXIT_SUCCESS;
}
#endif
Adaptive gain computation.
Generic class defining intrinsic camera parameters.
vpCameraParametersProjType
@ perspectiveProjWithDistortion
Perspective projection with distortion model.
Implementation of column vector and the associated operations.
static const vpColor green
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
static void display(const vpImage< unsigned char > &I)
static void flush(const vpImage< unsigned char > &I)
static void displayText(const vpImage< unsigned char > &I, const vpImagePoint &ip, const std::string &s, const vpColor &color)
error that can be emitted by ViSP classes.
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpImagePoint &t)
Class that defines a 3D point visual feature which is composed by one parameters that is that defin...
vpFeatureDepth & buildFrom(const double &x, const double &y, const double &Z, const double &LogZoverZstar)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
void display(const vpCameraParameters &cam, const vpImage< unsigned char > &I, const vpColor &color=vpColor::green, unsigned int thickness=1) const VP_OVERRIDE
Class that defines a 3D visual feature from a axis/angle parametrization that represent the rotatio...
vpFeatureThetaU & buildFrom(const vpThetaUVector &tu)
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
static double rad(double deg)
Class that tracks in an image a line moving edges.
void display(const vpImage< unsigned char > &I, const vpColor &color, unsigned int thickness=1)
void track(const vpImage< unsigned char > &I)
static bool intersection(const vpMeLine &line1, const vpMeLine &line2, vpImagePoint &ip)
void initTracking(const vpImage< unsigned char > &I)
void setPointsToTrack(const int &points_to_track)
void setRange(const unsigned int &range)
void setLikelihoodThresholdType(const vpLikelihoodThresholdType likelihood_threshold_type)
void setThreshold(const double &threshold)
void setSampleStep(const double &sample_step)
static void convertPoint(const vpCameraParameters &cam, const double &u, const double &v, double &x, double &y)
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
void set_x(double x)
Set the point x coordinate in the image plane.
double get_y() const
Get the point y coordinate in the image plane.
double get_x() const
Get the point x coordinate in the image plane.
double get_Z() const
Get the point cZ coordinate in the camera frame.
void display(const vpImage< unsigned char > &I, const vpCameraParameters &cam, const vpColor &color=vpColor::green, unsigned int thickness=1) VP_OVERRIDE
void setWorldCoordinates(double oX, double oY, double oZ)
void set_y(double y)
Set the point y coordinate in the image plane.
Class used for pose computation from N points (pose from point only). Some of the algorithms implemen...
void addPoint(const vpPoint &P)
@ DEMENTHON_LAGRANGE_VIRTUAL_VS
bool computePose(vpPoseMethodType method, vpHomogeneousMatrix &cMo, FuncCheckValidityPose func=nullptr)
void acquire(vpImage< unsigned char > &grey, double *ts=nullptr)
bool open(const rs2::config &cfg=rs2::config())
Control of Irisa's gantry robot named Afma6.
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) VP_OVERRIDE
@ STATE_VELOCITY_CONTROL
Initialize the velocity controller.
virtual vpRobotStateType setRobotState(const vpRobot::vpRobotStateType newState)
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
void setServo(const vpServoType &servo_type)
vpColVector computeControlLaw()
std::shared_ptr< vpDisplay > createDisplay()
Return a smart pointer vpDisplay specialization if a GUI library is available or nullptr otherwise.