Visual servoing experiment on 4 points with a visualization and image generation from the camera and from an external view using vpSimulator.
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpDebug.h>
#if (defined(VISP_HAVE_COIN3D_AND_GUI) && (defined(VISP_HAVE_GTK) || defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI)))
#include <visp3/ar/vpSimulator.h>
#include <visp3/core/vpCameraParameters.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpImageConvert.h>
#include <visp3/core/vpTime.h>
#if defined(VISP_HAVE_X11)
#include <visp3/gui/vpDisplayX.h>
#elif defined(VISP_HAVE_GDI)
#include <visp3/gui/vpDisplayGDI.h>
#elif defined(VISP_HAVE_GTK)
#include <visp3/gui/vpDisplayGTK.h>
#endif
#include <visp3/blob/vpDot2.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/core/vpMath.h>
#include <visp3/robot/vpSimulatorCamera.h>
#include <visp3/vision/vpPose.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeaturePoint.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>
#ifdef ENABLE_VISP_NAMESPACE
#endif
static void *mainLoop(void *_simu)
{
robot.setSamplingTime(0.04);
for (int i = 0; i < 4; i++)
point[i].project(cMo_d);
for (int i = 0; i < 4; i++)
#if defined(VISP_HAVE_X11)
vpDisplayX disp;
#elif defined(VISP_HAVE_GDI)
#elif defined(VISP_HAVE_GTK)
#endif
disp.
init(I, 100, 100,
"Simulation display");
std::cout << "A click in the four dots clockwise. " << std::endl;
for (int i = 0; i < 4; i++) {
std::cout << "A click in the dot " << i << std::endl;
}
for (int i = 0; i < 4; i++)
int k = 0;
while (k++ < 200) {
for (int i = 0; i < 4; i++) {
}
wMc = robot.
getPosition();
}
void *a = nullptr;
return a;
}
int main()
{
try {
std::string filename = "./4points.iv";
if (!ipath.empty())
std::cout << "Load : " << filename << std::endl << "This file should be in the working directory" << std::endl;
simu.
load(filename.c_str());
return EXIT_SUCCESS;
}
std::cout << "Catch an exception: " << e << std::endl;
return EXIT_FAILURE;
}
}
#else
int main()
{
std::cout
<< "You do not have X11, GTK, or OpenCV, or GDI (Graphical Device Interface) functionalities to display images..."
<< std::endl;
std::cout << "Tip if you are on a unix-like system:" << std::endl;
std::cout << "- Install X11, configure again ViSP using cmake and build again this example" << std::endl;
std::cout << "Tip if you are on a windows-like system:" << std::endl;
std::cout << "- Install GDI, configure again ViSP using cmake and build again this example" << std::endl;
return EXIT_SUCCESS;
}
#endif
Generic class defining intrinsic camera parameters.
Implementation of column vector and the associated operations.
Display for windows using GDI (available on any windows 32 platform).
The vpDisplayGTK allows to display image using the GTK 3rd party library. Thus to enable this class G...
void init(vpImage< unsigned char > &I, int win_x=-1, int win_y=-1, const std::string &win_title="") VP_OVERRIDE
static void display(const vpImage< unsigned char > &I)
static void flush(const vpImage< unsigned char > &I)
This tracker is meant to track a blob (connex pixels with same gray level) on a vpImage.
void track(const vpImage< unsigned char > &I, bool canMakeTheWindowGrow=true)
void setGraphics(bool activate)
void initTracking(const vpImage< unsigned char > &I, unsigned int size=0)
error that can be emitted by ViSP classes.
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpImagePoint &t)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
static double rad(double deg)
Implementation of a matrix and operations on matrices.
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
void setWorldCoordinates(double oX, double oY, double oZ)
void get_eJe(vpMatrix &eJe) VP_OVERRIDE
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) VP_OVERRIDE
static void display(const vpServo &s, const vpCameraParameters &cam, const vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
void set_cVe(const vpVelocityTwistMatrix &cVe_)
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
void set_eJe(const vpMatrix &eJe_)
void setServo(const vpServoType &servo_type)
vpColVector computeControlLaw()
Class that defines the simplest robot: a free flying camera.
Implementation of a simulator based on Coin3d (www.coin3d.org).
unsigned int getInternalWidth() const
void load(const char *file_name)
load an iv file
void setInternalCameraParameters(vpCameraParameters &cam)
set internal camera parameters
virtual void mainLoop()
activate the mainloop
void getCameraParameters(vpCameraParameters &cam)
get the intrinsic parameters of the camera
void getInternalImage(vpImage< unsigned char > &I)
get an Image of the internal view
void initMainApplication()
perform some initialization in the main program thread
void initApplication(void *(*start_routine)(void *))
begin the main program
void setCameraPosition(vpHomogeneousMatrix &cMf)
set the camera position (from an homogeneous matrix)
void initExternalViewer(unsigned int nlig, unsigned int ncol)
initialize the external view
unsigned int getInternalHeight() const
virtual void initInternalViewer(unsigned int nlig, unsigned int ncol)
initialize the camera view
void closeMainApplication()
VISP_EXPORT int wait(double t0, double t)
VISP_EXPORT double measureTimeMs()