Visual Servoing Platform  version 3.6.1 under development (2024-11-14)
tutorial-pf.cpp

Tutorial on how to use the Particle Filter (PF) on a complex non-linear use-case. The system is an object, whose coordinate frame origin is the point O, on which are sticked four markers. The object revolves in a plane parallel to the ground around a fixed point W whose coordinate frame is the world frame. The scene is observed by a pinhole camera whose coordinate frame has the origin C and which is fixed to the ceiling.

The state vector of the PF is:

\[ \begin{array}{lcl} \textbf{x}[0] &=& {}^WX_x \\ \textbf{x}[1] &=& {}^WX_y \\ \textbf{x}[2] &=& {}^WX_z \\ \textbf{x}[3] &=& \omega \Delta t \end{array} \]

The measurement $ \textbf{z} $ corresponds to the coordinates in pixels of the different markers. Be $ u_i $ and $ v_i $ the horizontal and vertical pixel coordinates of the $ i^{th} $ marker. The measurement vector can be written as:

\[ \begin{array}{lcl} \textbf{z}[2i] &=& u_i \\ \textbf{z}[2i+1] &=& v_i \end{array} \]

Some noise is added to the measurement vector to simulate measurements which are not perfect.

/*
*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2024 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*/
// ViSP includes
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpCameraParameters.h>
#include <visp3/core/vpGaussRand.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpMeterPixelConversion.h>
#include <visp3/core/vpPixelMeterConversion.h>
#ifdef VISP_HAVE_DISPLAY
#include <visp3/gui/vpPlot.h>
#include <visp3/gui/vpDisplayFactory.h>
#endif
#include <visp3/vision/vpPose.h>
#include <visp3/core/vpUKSigmaDrawerMerwe.h>
#include <visp3/core/vpUnscentedKalman.h>
#include <visp3/core/vpParticleFilter.h>
#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif
#if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11)
vpColVector fx(const vpColVector &x, const double & /*dt*/)
{
vpColVector x_kPlus1(4);
x_kPlus1[0] = x[0] * std::cos(x[3]) - x[1] * std::sin(x[3]); // wX
x_kPlus1[1] = x[0] * std::sin(x[3]) + x[1] * std::cos(x[3]); // wY
x_kPlus1[2] = x[2]; // wZ
x_kPlus1[3] = x[3]; // omega * dt
return x_kPlus1;
}
vpHomogeneousMatrix computePose(std::vector<vpPoint> &point, const std::vector<vpImagePoint> &ip, const vpCameraParameters &cam)
{
vpPose pose;
double x = 0, y = 0;
for (unsigned int i = 0; i < point.size(); i++) {
point[i].set_x(x);
point[i].set_y(y);
pose.addPoint(point[i]);
}
return cMo;
}
{
public:
vpObjectSimulator(const double &R, const double &w, const double &phi, const double &wZ, const double &stdevRng)
: m_R(R)
, m_w(w)
, m_phi(phi)
, m_wZ(wZ)
, m_rng(stdevRng, 0.)
{ }
vpColVector move(const double &t)
{
vpColVector wX(4, 1.);
double tNoisy = (m_w + m_rng())* t + m_phi;
wX[0] = m_R * std::cos(tNoisy);
wX[1] = m_R * std::sin(tNoisy);
wX[2] = m_wZ;
return wX;
}
private:
double m_R;
double m_w;
double m_phi;
const double m_wZ;
vpGaussRand m_rng;
};
{
public:
const std::vector<vpColVector> &markers, const double &noise_stdev, const long &seed,
const double &likelihood_stdev)
: m_cam(cam)
, m_cMw(cMw)
, m_wRo(wRo)
, m_markers(markers)
, m_rng(noise_stdev, 0., seed)
{
double sigmaDistanceSquared = likelihood_stdev * likelihood_stdev;
m_constantDenominator = 1. / std::sqrt(2. * M_PI * sigmaDistanceSquared);
m_constantExpDenominator = -1. / (2. * sigmaDistanceSquared);
const unsigned int nbMarkers = static_cast<unsigned int>(m_markers.size());
for (unsigned int i = 0; i < nbMarkers; ++i) {
vpColVector marker = markers[i];
m_markersAsVpPoint.push_back(vpPoint(marker[0], marker[1], marker[2]));
}
}
vpColVector state_to_measurement(const vpColVector &x)
{
unsigned int nbMarkers = static_cast<unsigned int>(m_markers.size());
vpColVector meas(2*nbMarkers);
vpTranslationVector wTo(x[0], x[1], x[2]);
wMo.buildFrom(wTo, m_wRo);
for (unsigned int i = 0; i < nbMarkers; ++i) {
vpColVector cX = m_cMw * wMo * m_markers[i];
double u = 0., v = 0.;
vpMeterPixelConversion::convertPoint(m_cam, cX[0] / cX[2], cX[1] / cX[2], u, v);
meas[2*i] = u;
meas[2*i + 1] = v;
}
return meas;
}
vpColVector measureGT(const vpColVector &wX)
{
unsigned int nbMarkers = static_cast<unsigned int>(m_markers.size());
vpColVector meas(2*nbMarkers);
vpTranslationVector wTo(wX[0], wX[1], wX[2]);
wMo.buildFrom(wTo, m_wRo);
for (unsigned int i = 0; i < nbMarkers; ++i) {
vpColVector cX = m_cMw * wMo * m_markers[i];
double u = 0., v = 0.;
vpMeterPixelConversion::convertPoint(m_cam, cX[0] / cX[2], cX[1] / cX[2], u, v);
meas[2*i] = u;
meas[2*i + 1] = v;
}
return meas;
}
vpColVector measureWithNoise(const vpColVector &wX)
{
vpColVector measurementsGT = measureGT(wX);
vpColVector measurementsNoisy = measurementsGT;
unsigned int sizeMeasurement = measurementsGT.size();
for (unsigned int i = 0; i < sizeMeasurement; ++i) {
measurementsNoisy[i] += m_rng();
}
return measurementsNoisy;
}
double likelihood(const vpColVector &x, const vpColVector &meas)
{
unsigned int nbMarkers = static_cast<unsigned int>(m_markers.size());
double likelihood = 0.;
vpTranslationVector wTo(x[0], x[1], x[2]);
wMo.buildFrom(wTo, m_wRo);
const unsigned int sizePt2D = 2;
const unsigned int idX = 0, idY = 1, idZ = 2;
double sumError = 0.;
// Compute the error between the projection of the markers that correspond
// to the particle position and the actual measurements of the markers
// projection
for (unsigned int i = 0; i < nbMarkers; ++i) {
vpColVector cX = m_cMw * wMo * m_markers[i];
vpImagePoint projParticle;
vpMeterPixelConversion::convertPoint(m_cam, cX[idX] / cX[idZ], cX[idY] / cX[idZ], projParticle);
vpImagePoint measPt(meas[sizePt2D * i + 1], meas[sizePt2D * i]);
double error = vpImagePoint::sqrDistance(projParticle, measPt);
sumError += error;
}
// Compute the likelihood from the mean error
likelihood = std::exp(m_constantExpDenominator * sumError / static_cast<double>(nbMarkers)) * m_constantDenominator;
likelihood = std::min(likelihood, 1.0); // Clamp to have likelihood <= 1.
likelihood = std::max(likelihood, 0.); // Clamp to have likelihood >= 0.
return likelihood;
}
private:
vpCameraParameters m_cam; // The camera parameters
vpHomogeneousMatrix m_cMw; // The pose of the world frame with regard to the camera frame.
vpRotationMatrix m_wRo; // The rotation matrix that expresses the rotation between the world frame and object frame.
std::vector<vpColVector> m_markers; // The position of the markers in the object frame.
std::vector<vpPoint> m_markersAsVpPoint; // The position of the markers in the object frame, expressed as vpPoint.
vpGaussRand m_rng; // Noise simulator for the measurements
double m_constantDenominator; // Denominator of the Gaussian function used for the likelihood computation.
double m_constantExpDenominator; // Denominator of the exponential of the Gaussian function used for the likelihood computation.
};
{
// --- Main loop parameters---
static const int SOFTWARE_CONTINUE = 42;
bool m_useDisplay;
unsigned int m_nbStepsWarmUp;
unsigned int m_nbSteps;
// --- PF parameters---
unsigned int m_N;
double m_maxDistanceForLikelihood;
double m_ampliMaxX;
double m_ampliMaxY;
double m_ampliMaxZ;
double m_ampliMaxOmega;
long m_seedPF;
int m_nbThreads;
: m_useDisplay(true)
, m_nbStepsWarmUp(200)
, m_nbSteps(300)
, m_N(500)
, m_maxDistanceForLikelihood(10.)
, m_ampliMaxX(0.02)
, m_ampliMaxY(0.02)
, m_ampliMaxZ(0.01)
, m_ampliMaxOmega(0.02)
, m_seedPF(4224)
, m_nbThreads(1)
{ }
int parseArgs(const int argc, const char *argv[])
{
int i = 1;
while (i < argc) {
std::string arg(argv[i]);
if ((arg == "--nb-steps-main") && ((i+1) < argc)) {
m_nbSteps = std::atoi(argv[i + 1]);
++i;
}
else if ((arg == "--nb-steps-warmup") && ((i+1) < argc)) {
m_nbStepsWarmUp = std::atoi(argv[i + 1]);
++i;
}
else if ((arg == "--max-distance-likelihood") && ((i+1) < argc)) {
m_maxDistanceForLikelihood = std::atof(argv[i + 1]);
++i;
}
else if (((arg == "-N") || (arg == "--nb-particles")) && ((i+1) < argc)) {
m_N = std::atoi(argv[i + 1]);
++i;
}
else if ((arg == "--seed") && ((i+1) < argc)) {
m_seedPF = std::atoi(argv[i + 1]);
++i;
}
else if ((arg == "--nb-threads") && ((i+1) < argc)) {
m_nbThreads = std::atoi(argv[i + 1]);
++i;
}
else if ((arg == "--ampli-max-X") && ((i+1) < argc)) {
m_ampliMaxX = std::atof(argv[i + 1]);
++i;
}
else if ((arg == "--ampli-max-Y") && ((i+1) < argc)) {
m_ampliMaxY = std::atof(argv[i + 1]);
++i;
}
else if ((arg == "--ampli-max-Z") && ((i+1) < argc)) {
m_ampliMaxZ = std::atof(argv[i + 1]);
++i;
}
else if ((arg == "--ampli-max-omega") && ((i+1) < argc)) {
m_ampliMaxOmega = std::atof(argv[i + 1]);
++i;
}
else if (arg == "-d") {
m_useDisplay = false;
}
else if ((arg == "-h") || (arg == "--help")) {
printUsage(std::string(argv[0]));
SoftwareArguments defaultArgs;
defaultArgs.printDetails();
return 0;
}
else {
std::cout << "WARNING: unrecognised argument \"" << arg << "\"";
if (i + 1 < argc) {
std::cout << " with associated value(s) { ";
int nbValues = 0;
int j = i + 1;
bool hasToRun = true;
while ((j < argc) && hasToRun) {
std::string nextValue(argv[j]);
if (nextValue.find("--") == std::string::npos) {
std::cout << nextValue << " ";
++nbValues;
}
else {
hasToRun = false;
}
++j;
}
std::cout << "}" << std::endl;
i += nbValues;
}
}
++i;
}
return SOFTWARE_CONTINUE;
}
private:
void printUsage(const std::string &softName)
{
std::cout << "SYNOPSIS" << std::endl;
std::cout << " " << softName << " [--nb-steps-main <uint>] [--nb-steps-warmup <uint>]" << std::endl;
std::cout << " [--max-distance-likelihood <double>] [-N, --nb-particles <uint>] [--seed <int>] [--nb-threads <int>]" << std::endl;
std::cout << " [--ampli-max-X <double>] [--ampli-max-Y <double>] [--ampli-max-Z <double>] [--ampli-max-omega <double>]" << std::endl;
std::cout << " [-d, --no-display] [-h]" << std::endl;
}
void printDetails()
{
std::cout << std::endl << std::endl;
std::cout << "DETAILS" << std::endl;
std::cout << " --nb-steps-main" << std::endl;
std::cout << " Number of steps in the main loop." << std::endl;
std::cout << " Default: " << m_nbSteps << std::endl;
std::cout << std::endl;
std::cout << " --nb-steps-warmup" << std::endl;
std::cout << " Number of steps in the warmup loop." << std::endl;
std::cout << " Default: " << m_nbStepsWarmUp << std::endl;
std::cout << std::endl;
std::cout << " --max-distance-likelihood" << std::endl;
std::cout << " Maximum mean distance of the projection of the markers corresponding" << std::endl;
std::cout << " to a particle with the measurements. Above this value, the likelihood of the particle is 0." << std::endl;
std::cout << " Default: " << m_maxDistanceForLikelihood << std::endl;
std::cout << std::endl;
std::cout << " -N, --nb-particles" << std::endl;
std::cout << " Number of particles of the Particle Filter." << std::endl;
std::cout << " Default: " << m_N << std::endl;
std::cout << std::endl;
std::cout << " --seed" << std::endl;
std::cout << " Seed to initialize the Particle Filter." << std::endl;
std::cout << " Use a negative value makes to use the current timestamp instead." << std::endl;
std::cout << " Default: " << m_seedPF << std::endl;
std::cout << std::endl;
std::cout << " --nb-threads" << std::endl;
std::cout << " Set the number of threads to use in the Particle Filter (only if OpenMP is available)." << std::endl;
std::cout << " Use a negative value to use the maximum number of threads instead." << std::endl;
std::cout << " Default: " << m_nbThreads << std::endl;
std::cout << std::endl;
std::cout << " --ampli-max-X" << std::endl;
std::cout << " Maximum amplitude of the noise added to a particle along the X-axis." << std::endl;
std::cout << " Default: " << m_ampliMaxX << std::endl;
std::cout << std::endl;
std::cout << " --ampli-max-Y" << std::endl;
std::cout << " Maximum amplitude of the noise added to a particle along the Y-axis." << std::endl;
std::cout << " Default: " << m_ampliMaxY << std::endl;
std::cout << std::endl;
std::cout << " --ampli-max-Z" << std::endl;
std::cout << " Maximum amplitude of the noise added to a particle along the Z-axis." << std::endl;
std::cout << " Default: " << m_ampliMaxZ << std::endl;
std::cout << std::endl;
std::cout << " --ampli-max-omega" << std::endl;
std::cout << " Maximum amplitude of the noise added to a particle affecting the pulsation of the motion." << std::endl;
std::cout << " Default: " << m_ampliMaxOmega << std::endl;
std::cout << std::endl;
std::cout << " -d, --no-display" << std::endl;
std::cout << " Deactivate display." << std::endl;
std::cout << " Default: display is ";
#ifdef VISP_HAVE_DISPLAY
std::cout << "ON" << std::endl;
#else
std::cout << "OFF" << std::endl;
#endif
std::cout << std::endl;
std::cout << " -h, --help" << std::endl;
std::cout << " Display this help." << std::endl;
std::cout << std::endl;
}
};
int main(const int argc, const char *argv[])
{
int returnCode = args.parseArgs(argc, argv);
return returnCode;
}
const unsigned int nbIter = 200; // Number of time steps for the simulation
const double dt = 0.001; // Period of 0.001s
const double sigmaMeasurements = 2.; // Standard deviation of the measurements: 2 pixels
const double radius = 0.25; // Radius of revolution of 0.25m
const double w = 2 * M_PI * 10; // Pulsation of the motion of revolution
const double phi = 2; // Phase of the motion of revolution
// Vector of the markers sticked on the object
const std::vector<vpColVector> markers = { vpColVector({-0.05, 0.05, 0., 1.}),
vpColVector({0.05, 0.05, 0., 1.}),
vpColVector({0.05, -0.05, 0., 1.}),
vpColVector({-0.05, -0.05, 0., 1.}) };
const unsigned int nbMarkers = static_cast<unsigned int>(markers.size());
std::vector<vpPoint> markersAsVpPoint;
for (unsigned int i = 0; i < nbMarkers; ++i) {
vpColVector marker = markers[i];
markersAsVpPoint.push_back(vpPoint(marker[0], marker[1], marker[2]));
}
const long seed = 42; // Seed for the random generator
vpHomogeneousMatrix cMw; // Pose of the world frame with regard to the camera frame
cMw[0][0] = 1.; cMw[0][1] = 0.; cMw[0][2] = 0.; cMw[0][3] = 0.2;
cMw[1][0] = 0.; cMw[1][1] = -1.; cMw[1][2] = 0.; cMw[1][3] = 0.3;
cMw[2][0] = 0.; cMw[2][1] = 0.; cMw[2][2] = -1.; cMw[2][3] = 1.;
vpHomogeneousMatrix wMo; // Pose of the object frame with regard to the world frame
wMo[0][0] = 1.; wMo[0][1] = 0.; wMo[0][2] = 0.; wMo[0][3] = radius;
wMo[1][0] = 0.; wMo[1][1] = 1.; wMo[1][2] = 0.; wMo[1][3] = 0;
wMo[2][0] = 0.; wMo[2][1] = 0.; wMo[2][2] = 1.; wMo[2][3] = 0.2;
vpRotationMatrix wRo; // Rotation between the object frame and world frame
wMo.extract(wRo);
const double wZ = wMo[2][3];
// Create a camera parameter container
// Camera initialization with a perspective projection without distortion model
double px = 600; double py = 600; double u0 = 320; double v0 = 240;
cam.initPersProjWithoutDistortion(px, py, u0, v0);
vpColVector X0(4); // The initial guess for the state
X0[0] = 0.95 * radius * std::cos(phi); // Wrong estimation of the position along the X-axis = 5% of error
X0[1] = 0.95 * radius * std::sin(phi); // Wrong estimation of the position along the Y-axis = 5% of error
X0[2] = 0.95 * wZ; // Wrong estimation of the position along the Z-axis: error of 5%
X0[3] = 0.95 * w * dt; // Wrong estimation of the pulsation: error of 25%
const double maxDistanceForLikelihood = args.m_maxDistanceForLikelihood; // The maximum allowed distance between a particle and the measurement, leading to a likelihood equal to 0..
const double sigmaLikelihood = maxDistanceForLikelihood / 3.; // The standard deviation of likelihood function.
const unsigned int nbParticles = args.m_N; // Number of particles to use
const double ampliMaxX = args.m_ampliMaxX, ampliMaxY = args.m_ampliMaxY, ampliMaxZ = args.m_ampliMaxZ;
const double ampliMaxOmega = args.m_ampliMaxOmega;
const std::vector<double> stdevsPF = { ampliMaxX/3., ampliMaxY/3., ampliMaxZ/3., ampliMaxOmega/3. }; // Standard deviation for each state component
long seedPF = args.m_seedPF; // Seed for the random generators of the PF
const int nbThread = args.m_nbThreads;
if (seedPF < 0) {
seedPF = static_cast<long>(vpTime::measureTimeMicros());
}
// Object that converts the pose of the object into measurements
vpMarkersMeasurements markerMeas(cam, cMw, wRo, markers, sigmaMeasurements, seed, sigmaLikelihood);
using std::placeholders::_1;
using std::placeholders::_2;
// Initialize the PF
vpParticleFilter<vpColVector> pfFilter(nbParticles, stdevsPF, seedPF, nbThread);
pfFilter.init(X0, processFunc, likelihoodFunc, checkResamplingFunc, resamplingFunc);
// Initialize the attributes of the UKF
// Sigma point drawer
std::shared_ptr<vpUKSigmaDrawerAbstract> drawer = std::make_shared<vpUKSigmaDrawerMerwe>(4, 0.001, 2., -1);
// Measurements covariance
vpMatrix R1landmark(2, 2, 0.); // The covariance of the noise introduced by the measurement with 1 landmark
R1landmark[0][0] = sigmaMeasurements*sigmaMeasurements;
R1landmark[1][1] = sigmaMeasurements*sigmaMeasurements;
vpMatrix R(2*nbMarkers, 2 * nbMarkers);
for (unsigned int i = 0; i < nbMarkers; ++i) {
R.insert(R1landmark, 2*i, 2*i);
}
// Process covariance
const double processVariance = 0.000025; // Variance of the process of (0.005cm)^2
vpMatrix Q; // The noise introduced during the prediction step
Q.eye(4);
Q = Q * processVariance;
// Process covariance initial guess
vpMatrix P0(4, 4);
P0.eye(4);
P0[0][0] = 1.;
P0[1][1] = 1.;
P0[2][2] = 1.;
P0[2][2] = 5.;
// Functions for the UKF
// Initialize the UKF
vpUnscentedKalman ukf(Q, R, drawer, f, h);
ukf.init(X0, P0);
#ifdef VISP_HAVE_DISPLAY
// Initialize the plot
vpPlot plot(1);
plot.initGraph(0, 4);
plot.setTitle(0, "Position of the robot wX");
plot.setUnitX(0, "Position along x(m)");
plot.setUnitY(0, "Position along y (m)");
plot.setLegend(0, 0, "GT");
plot.setLegend(0, 1, "PF");
plot.setLegend(0, 2, "UKF");
plot.setLegend(0, 3, "Measure");
plot.initRange(0, -1.25 * radius, 1.25 * radius, -1.25 * radius, 1.25 * radius);
plot.setColor(0, 0, vpColor::red);
plot.setColor(0, 1, vpColor::green);
plot.setColor(0, 2, vpColor::blue);
plot.setColor(0, 3, vpColor::black);
vpPlot plotError(1, 350, 700, 700, 700, "Error w.r.t. GT");
plotError.initGraph(0, 3);
plotError.setUnitX(0, "Time (s)");
plotError.setUnitY(0, "Error (m)");
plotError.setLegend(0, 0, "PF");
plotError.setLegend(0, 1, "UKF");
plotError.setLegend(0, 2, "Measure");
plotError.initRange(0, 0, nbIter * dt, 0, radius / 2.);
plotError.setColor(0, 0, vpColor::green);
plotError.setColor(0, 1, vpColor::blue);
plotError.setColor(0, 2, vpColor::black);
#endif
// Initialize the display
// Depending on the detected third party libraries, we instantiate here the
// first video device which is available
#ifdef VISP_HAVE_DISPLAY
vpImage<vpRGBa> Idisp(700, 700, vpRGBa(255));
std::shared_ptr<vpDisplay> d = vpDisplayFactory::createDisplay(Idisp, 800, -1, "Projection of the markers");
#endif
// Initialize the simulation
vpObjectSimulator object(radius, w, phi, wZ, ampliMaxOmega / 3.);
vpColVector object_pos(4, 0.);
object_pos[3] = 1.;
for (unsigned int i = 0; i < nbIter; ++i) {
double t = dt * static_cast<double>(i);
std::cout << "[Timestep" << i << ", t = " << t << "]" << std::endl;
// Update object pose
object_pos = object.move(t);
// Perform the measurement
vpColVector z = markerMeas.measureWithNoise(object_pos);
double tPF = vpTime::measureTimeMs();
pfFilter.filter(z, dt);
double dtPF = vpTime::measureTimeMs() - tPF;
// Use the UKF to filter the measurement for comparison
double tUKF = vpTime::measureTimeMs();
ukf.filter(z, dt);
double dtUKF = vpTime::measureTimeMs() - tUKF;
// Get the filtered states
vpColVector XestPF = pfFilter.computeFilteredState();
vpColVector XestUKF = ukf.getXest();
// Compute satistics
vpColVector cX_GT = cMw * object_pos;
vpColVector wX_UKF(4, 1.);
vpColVector wX_PF(4, 1.);
for (unsigned int i = 0; i < 3; ++i) {
wX_PF[i] = XestPF[i];
wX_UKF[i] = XestUKF[i];
}
vpColVector cX_PF = cMw * wX_PF;
vpColVector cX_UKF = cMw * wX_UKF;
vpColVector error_PF = cX_PF - cX_GT;
vpColVector error_UKF = cX_UKF - cX_GT;
// Log statistics
std::cout << " [Particle Filter method] " << std::endl;
std::cout << " Norm of the error = " << error_PF.frobeniusNorm() << " m^2" << std::endl;
std::cout << " Fitting duration = " << dtPF << " ms" << std::endl;
std::cout << " [Unscented Kalman Filter method] " << std::endl;
std::cout << " Norm of the error = " << error_UKF.frobeniusNorm() << " m^2" << std::endl;
std::cout << " Fitting duration = " << dtUKF << " ms" << std::endl;
#ifdef VISP_HAVE_DISPLAY
// Prepare the pose computation:
// the image points corresponding to the noisy markers are needed
std::vector<vpImagePoint> ip;
for (unsigned int id = 0; id < nbMarkers; ++id) {
vpImagePoint markerProjNoisy(z[2*id + 1], z[2*id]);
ip.push_back(markerProjNoisy);
}
// Compute the pose using the noisy markers
vpHomogeneousMatrix cMo_noisy = computePose(markersAsVpPoint, ip, cam);
vpHomogeneousMatrix wMo_noisy = cMw.inverse() * cMo_noisy;
double wXnoisy = wMo_noisy[0][3];
double wYnoisy = wMo_noisy[1][3];
// Plot the ground truth
plot.plot(0, 0, object_pos[0], object_pos[1]);
// Plot the PF filtered state
plot.plot(0, 1, XestPF[0], XestPF[1]);
// Plot the UKF filtered state
plot.plot(0, 2, XestUKF[0], XestUKF[1]);
// Plot the noisy pose
plot.plot(0, 3, wXnoisy, wYnoisy);
// Plot the PF filtered state error
plotError.plot(0, 0, t, error_PF.frobeniusNorm());
// Plot the UKF filtered state error
plotError.plot(0, 1, t, error_UKF.frobeniusNorm());
// Plot the noisy error
plotError.plot(0, 2, t, (cMo_noisy.getTranslationVector() - vpTranslationVector(cX_GT.extract(0, 3))).frobeniusNorm());
// Display the projection of the markers
vpColVector zGT = markerMeas.measureGT(object_pos);
vpColVector zFiltUkf = markerMeas.state_to_measurement(XestUKF);
vpColVector zFiltPF = markerMeas.state_to_measurement(XestPF);
for (unsigned int id = 0; id < nbMarkers; ++id) {
vpImagePoint markerProjGT(zGT[2*id + 1], zGT[2*id]);
vpDisplay::displayCross(Idisp, markerProjGT, 5, vpColor::red);
vpImagePoint markerProjFiltPF(zFiltPF[2*id + 1], zFiltPF[2*id]);
vpDisplay::displayCross(Idisp, markerProjFiltPF, 5, vpColor::green);
vpImagePoint markerProjFiltUKF(zFiltUkf[2*id + 1], zFiltUkf[2*id]);
vpDisplay::displayCross(Idisp, markerProjFiltUKF, 5, vpColor::blue);
vpImagePoint markerProjNoisy(z[2*id + 1], z[2*id]);
vpDisplay::displayCross(Idisp, markerProjNoisy, 5, vpColor::black);
}
vpImagePoint ipText(20, 20);
vpDisplay::displayText(Idisp, ipText, std::string("GT"), vpColor::red);
ipText.set_i(ipText.get_i() + 20);
vpDisplay::displayText(Idisp, ipText, std::string("Filtered by PF"), vpColor::green);
ipText.set_i(ipText.get_i() + 20);
vpDisplay::displayText(Idisp, ipText, std::string("Filtered by UKF"), vpColor::blue);
ipText.set_i(ipText.get_i() + 20);
vpDisplay::displayText(Idisp, ipText, std::string("Measured"), vpColor::black);
#endif
}
std::cout << "Press Enter to quit..." << std::endl;
std::cin.get();
return 0;
}
#else
int main()
{
std::cout << "This example is only available if you compile ViSP in C++11 standard or higher." << std::endl;
return 0;
}
#endif
unsigned int size() const
Return the number of elements of the 2D array.
Definition: vpArray2D.h:349
Generic class defining intrinsic camera parameters.
void initPersProjWithoutDistortion(double px, double py, double u0, double v0)
Implementation of column vector and the associated operations.
Definition: vpColVector.h:191
double frobeniusNorm() const
static const vpColor red
Definition: vpColor.h:217
static const vpColor blue
Definition: vpColor.h:223
static const vpColor black
Definition: vpColor.h:211
static const vpColor green
Definition: vpColor.h:220
static void display(const vpImage< unsigned char > &I)
static void displayCross(const vpImage< unsigned char > &I, const vpImagePoint &ip, unsigned int size, const vpColor &color, unsigned int thickness=1)
static void flush(const vpImage< unsigned char > &I)
static void displayText(const vpImage< unsigned char > &I, const vpImagePoint &ip, const std::string &s, const vpColor &color)
Class for generating random number with normal probability density.
Definition: vpGaussRand.h:117
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix & buildFrom(const vpTranslationVector &t, const vpRotationMatrix &R)
vpHomogeneousMatrix inverse() const
vpTranslationVector getTranslationVector() const
void extract(vpRotationMatrix &R) const
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:82
static double sqrDistance(const vpImagePoint &iP1, const vpImagePoint &iP2)
[Object_simulator]
vpColVector state_to_measurement(const vpColVector &x)
[Measurement_function]
double likelihood(const vpColVector &x, const vpColVector &meas)
[Noisy_measurements]
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:169
static void convertPoint(const vpCameraParameters &cam, const double &x, const double &y, double &u, double &v)
[Process_function]
The class permits to use a Particle Filter.
std::function< vpParticlesWithWeights(const std::vector< vpColVector > &, const std::vector< double > &)> vpResamplingFunction
Function that takes as argument the vector of particles and the vector of associated weights....
std::function< vpColVector(const vpColVector &, const double &)> vpProcessFunction
Process model function, which projects a particle forward in time. The first argument is a particle,...
std::function< bool(const unsigned int &, const std::vector< double > &)> vpResamplingConditionFunction
Function that takes as argument the number of particles and the vector of weights associated to each ...
std::function< double(const vpColVector &, const MeasurementsType &)> vpLikelihoodFunction
Likelihood function, which evaluates the likelihood of a particle with regard to the measurements....
static void convertPoint(const vpCameraParameters &cam, const double &u, const double &v, double &x, double &y)
This class enables real time drawing of 2D or 3D graphics. An instance of the class open a window whi...
Definition: vpPlot.h:112
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:79
Class used for pose computation from N points (pose from point only). Some of the algorithms implemen...
Definition: vpPose.h:77
void addPoint(const vpPoint &P)
Definition: vpPose.cpp:96
@ DEMENTHON_LAGRANGE_VIRTUAL_VS
Definition: vpPose.h:98
bool computePose(vpPoseMethodType method, vpHomogeneousMatrix &cMo, FuncCheckValidityPose func=nullptr)
Definition: vpPose.cpp:385
Definition: vpRGBa.h:65
Implementation of a rotation matrix and operations on such kind of matrices.
Class that consider the case of a translation vector.
std::function< vpColVector(const vpColVector &)> vpMeasurementFunction
Measurement function, which converts the prior points in the measurement space. The argument is a poi...
std::function< vpColVector(const vpColVector &, const double &)> vpProcessFunction
Process model function, which projects the sigma points forward in time. The first argument is a sigm...
std::shared_ptr< vpDisplay > createDisplay()
Return a smart pointer vpDisplay specialization if a GUI library is available or nullptr otherwise.
VISP_EXPORT int wait(double t0, double t)
VISP_EXPORT double measureTimeMicros()
VISP_EXPORT double measureTimeMs()
int m_nbThreads
Number of thread to use in the Particle Filter.
double m_ampliMaxY
Amplitude max of the noise for the state component corresponding to the Y coordinate.
unsigned int m_N
The number of particles.
double m_maxDistanceForLikelihood
The maximum allowed distance between a particle and the measurement, leading to a likelihood equal to...
double m_ampliMaxZ
Amplitude max of the noise for the state component corresponding to the Z coordinate.
int parseArgs(const int argc, const char *argv[])
double m_ampliMaxOmega
Amplitude max of the noise for the state component corresponding to the pulsation.
double m_ampliMaxX
Amplitude max of the noise for the state component corresponding to the X coordinate.
long m_seedPF
Seed for the random generators of the PF.