Visual Servoing Platform  version 3.6.1 under development (2024-05-08)
servoViper650FourPoints2DCamVelocityLs_cur-SR300.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See https://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * tests the control law
33  * eye-in-hand control
34  * velocity computed in the camera frame
35  *
36 *****************************************************************************/
56 #include <fstream>
57 #include <iostream>
58 #include <sstream>
59 #include <stdio.h>
60 #include <stdlib.h>
61 
62 #include <visp3/core/vpConfig.h>
63 
64 #if defined(VISP_HAVE_VIPER650) && defined(VISP_HAVE_REALSENSE) && defined(VISP_HAVE_X11)
65 
66 #include <visp3/blob/vpDot2.h>
67 #include <visp3/core/vpHomogeneousMatrix.h>
68 #include <visp3/core/vpIoTools.h>
69 #include <visp3/core/vpPoint.h>
70 #include <visp3/gui/vpDisplayX.h>
71 #include <visp3/robot/vpRobotViper650.h>
72 #include <visp3/sensor/vpRealSense.h>
73 #include <visp3/vision/vpPose.h>
74 #include <visp3/visual_features/vpFeatureBuilder.h>
75 #include <visp3/visual_features/vpFeaturePoint.h>
76 #include <visp3/vs/vpServo.h>
77 #include <visp3/vs/vpServoDisplay.h>
78 
79 #define L 0.05 // to deal with a 10cm by 10cm square
80 
99 void compute_pose(std::vector<vpPoint> &point, std::vector<vpDot2> &dot, vpCameraParameters cam,
100  vpHomogeneousMatrix &cMo, bool init)
101 {
102  vpPose pose;
103 
104  for (size_t i = 0; i < point.size(); i++) {
105 
106  double x = 0, y = 0;
107  vpImagePoint cog = dot[i].getCog();
109  y); // pixel to meter conversion
110  point[i].set_x(x); // projection perspective p
111  point[i].set_y(y);
112  pose.addPoint(point[i]);
113  }
114 
115  if (init == true) {
117  } else {
118  pose.computePose(vpPose::VIRTUAL_VS, cMo);
119  }
120 }
121 
122 int main()
123 {
124  // Log file creation in /tmp/$USERNAME/log.dat
125  // This file contains by line:
126  // - the 6 computed camera velocities (m/s, rad/s) to achieve the task
127  // - the 6 mesured joint velocities (m/s, rad/s)
128  // - the 6 mesured joint positions (m, rad)
129  // - the 8 values of s - s*
130  std::string username;
131  // Get the user login name
132  vpIoTools::getUserName(username);
133 
134  // Create a log filename to save velocities...
135  std::string logdirname;
136  logdirname = "/tmp/" + username;
137 
138  // Test if the output path exist. If no try to create it
139  if (vpIoTools::checkDirectory(logdirname) == false) {
140  try {
141  // Create the dirname
142  vpIoTools::makeDirectory(logdirname);
143  } catch (...) {
144  std::cerr << std::endl << "ERROR:" << std::endl;
145  std::cerr << " Cannot create " << logdirname << std::endl;
146  return EXIT_FAILURE;
147  }
148  }
149  std::string logfilename;
150  logfilename = logdirname + "/log.dat";
151 
152  // Open the log file name
153  std::ofstream flog(logfilename.c_str());
154 
155  try {
156  vpRobotViper650 robot;
157 
158  // Load the end-effector to camera frame transformation from SR300-eMc.cnf
159  // file
160  robot.init(vpRobotViper650::TOOL_CUSTOM, "./SR300-eMc.cnf");
162  robot.get_eMc(eMc);
163  std::cout << "Camera extrinsic parameters (eMc): \n" << eMc << std::endl;
164 
165  vpServo task;
166 
168 
169  vpRealSense g;
170  // Enable the RealSense device to acquire only color images with size
171  // 640x480
172  g.setEnableStream(rs::stream::color, true);
173  g.setEnableStream(rs::stream::depth, false);
174  g.setEnableStream(rs::stream::infrared, false);
175  g.setEnableStream(rs::stream::infrared2, false);
176  g.setStreamSettings(rs::stream::color, vpRealSense::vpRsStreamParams(640, 480, rs::format::rgba8, 30));
177  g.open();
178 
179  // Update camera parameters
180  vpCameraParameters cam =
182  std::cout << "Camera intrinsic parameters: \n" << cam << std::endl;
183 
184  g.acquire(I);
185 
186  vpDisplayX display(I, 100, 100, "Current image");
188  vpDisplay::flush(I);
189 
190  std::vector<vpDot2> dot(4);
191 
192  std::cout << "Click on the 4 dots clockwise starting from upper/left dot..." << std::endl;
193 
194  for (size_t i = 0; i < dot.size(); i++) {
195  dot[i].setGraphics(true);
196  dot[i].initTracking(I);
197  vpImagePoint cog = dot[i].getCog();
199  vpDisplay::flush(I);
200  }
201 
202  // Sets the current position of the visual feature
203  vpFeaturePoint p[4];
204  for (size_t i = 0; i < dot.size(); i++)
205  vpFeatureBuilder::create(p[i], cam, dot[i]); // retrieve x,y of the vpFeaturePoint structure
206 
207  // Set the position of the square target in a frame which origin is
208  // centered in the middle of the square
209  std::vector<vpPoint> point(4);
210  point[0].setWorldCoordinates(-L, -L, 0);
211  point[1].setWorldCoordinates(L, -L, 0);
212  point[2].setWorldCoordinates(L, L, 0);
213  point[3].setWorldCoordinates(-L, L, 0);
214 
215  // Compute target initial pose
217  compute_pose(point, dot, cam, cMo, true);
218  std::cout << "Initial camera pose (cMo): \n" << cMo << std::endl;
219 
220  // Initialise a desired pose to compute s*, the desired 2D point features
221  vpHomogeneousMatrix cMo_d(vpTranslationVector(0, 0, 0.5), // tz = 0.5 meter
222  vpRotationMatrix()); // no rotation
223 
224  // Sets the desired position of the 2D visual feature
225  vpFeaturePoint pd[4];
226  // Compute the desired position of the features from the desired pose
227  for (int i = 0; i < 4; i++) {
228  vpColVector cP, p;
229  point[i].changeFrame(cMo_d, cP);
230  point[i].projection(cP, p);
231 
232  pd[i].set_x(p[0]);
233  pd[i].set_y(p[1]);
234  pd[i].set_Z(cP[2]);
235  }
236 
237  // We want to see a point on a point
238  for (size_t i = 0; i < dot.size(); i++)
239  task.addFeature(p[i], pd[i]);
240 
241  // Set the proportional gain
242  task.setLambda(0.3);
243 
244  // Define the task
245  // - we want an eye-in-hand control law
246  // - camera velocities are computed
249  task.print();
250 
251  // Initialise the velocity control of the robot
253 
254  std::cout << "\nHit CTRL-C or click in the image to stop the loop...\n" << std::flush;
255  for (;;) {
256  // Acquire a new image from the camera
257  g.acquire(I);
258 
259  // Display this image
261 
262  try {
263  // For each point...
264  for (size_t i = 0; i < dot.size(); i++) {
265  // Achieve the tracking of the dot in the image
266  dot[i].track(I);
267  // Display a green cross at the center of gravity position in the
268  // image
269  vpImagePoint cog = dot[i].getCog();
271  }
272  } catch (...) {
273  std::cout << "Error detected while tracking visual features.." << std::endl;
274  break;
275  }
276 
277  // During the servo, we compute the pose using a non linear method. For
278  // the initial pose used in the non linear minimization we use the pose
279  // computed at the previous iteration.
280  compute_pose(point, dot, cam, cMo, false);
281 
282  for (size_t i = 0; i < dot.size(); i++) {
283  // Update the point feature from the dot location
284  vpFeatureBuilder::create(p[i], cam, dot[i]);
285  // Set the feature Z coordinate from the pose
286  vpColVector cP;
287  point[i].changeFrame(cMo, cP);
288 
289  p[i].set_Z(cP[2]);
290  }
291 
292  // Compute the visual servoing skew vector
293  vpColVector v = task.computeControlLaw();
294 
295  // Display the current and desired feature points in the image display
296  vpServoDisplay::display(task, cam, I);
297 
298  // Apply the computed joint velocities to the robot
300 
301  // Save velocities applied to the robot in the log file
302  // v[0], v[1], v[2] correspond to camera translation velocities in m/s
303  // v[3], v[4], v[5] correspond to camera rotation velocities in rad/s
304  flog << v[0] << " " << v[1] << " " << v[2] << " " << v[3] << " " << v[4] << " " << v[5] << " ";
305 
306  // Get the measured joint velocities of the robot
307  vpColVector qvel;
309  // Save measured joint velocities of the robot in the log file:
310  // - qvel[0], qvel[1], qvel[2] correspond to measured joint translation
311  // velocities in m/s
312  // - qvel[3], qvel[4], qvel[5] correspond to measured joint rotation
313  // velocities in rad/s
314  flog << qvel[0] << " " << qvel[1] << " " << qvel[2] << " " << qvel[3] << " " << qvel[4] << " " << qvel[5] << " ";
315 
316  // Get the measured joint positions of the robot
317  vpColVector q;
318  robot.getPosition(vpRobot::ARTICULAR_FRAME, q);
319  // Save measured joint positions of the robot in the log file
320  // - q[0], q[1], q[2] correspond to measured joint translation
321  // positions in m
322  // - q[3], q[4], q[5] correspond to measured joint rotation
323  // positions in rad
324  flog << q[0] << " " << q[1] << " " << q[2] << " " << q[3] << " " << q[4] << " " << q[5] << " ";
325 
326  // Save feature error (s-s*) for the 4 feature points. For each feature
327  // point, we have 2 errors (along x and y axis). This error is
328  // expressed in meters in the camera frame
329  flog << task.getError() << std::endl;
330 
331  vpDisplay::displayText(I, 10, 10, "Click to quit...", vpColor::red);
332  if (vpDisplay::getClick(I, false))
333  break;
334 
335  // Flush the display
336  vpDisplay::flush(I);
337 
338  // std::cout << "\t\t || s - s* || = " << ( task.getError()
339  // ).sumSquare() << std::endl;
340  }
341 
342  std::cout << "Display task information: " << std::endl;
343  task.print();
344  flog.close(); // Close the log file
345  return EXIT_SUCCESS;
346  } catch (const vpException &e) {
347  flog.close(); // Close the log file
348  std::cout << "Catch an exception: " << e.getMessage() << std::endl;
349  return EXIT_FAILURE;
350  }
351 }
352 
353 #else
354 int main()
355 {
356  std::cout << "You do not have an Viper 650 robot connected to your computer..." << std::endl;
357  return EXIT_SUCCESS;
358 }
359 #endif
Generic class defining intrinsic camera parameters.
@ perspectiveProjWithDistortion
Perspective projection with distortion model.
Implementation of column vector and the associated operations.
Definition: vpColVector.h:163
static const vpColor red
Definition: vpColor.h:211
static const vpColor blue
Definition: vpColor.h:217
static const vpColor green
Definition: vpColor.h:214
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
Definition: vpDisplayX.h:128
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
static void display(const vpImage< unsigned char > &I)
static void displayCross(const vpImage< unsigned char > &I, const vpImagePoint &ip, unsigned int size, const vpColor &color, unsigned int thickness=1)
static void flush(const vpImage< unsigned char > &I)
static void displayText(const vpImage< unsigned char > &I, const vpImagePoint &ip, const std::string &s, const vpColor &color)
error that can be emitted by ViSP classes.
Definition: vpException.h:59
const char * getMessage() const
Definition: vpException.cpp:64
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
void set_y(double y)
void set_x(double x)
void set_Z(double Z)
Implementation of an homogeneous matrix and operations on such kind of matrices.
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:82
void init(unsigned int h, unsigned int w, Type value)
Definition: vpImage.h:619
static bool checkDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:832
static std::string getUserName()
Definition: vpIoTools.cpp:725
static void makeDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:981
static void convertPoint(const vpCameraParameters &cam, const double &u, const double &v, double &x, double &y)
Class used for pose computation from N points (pose from point only). Some of the algorithms implemen...
Definition: vpPose.h:78
void addPoint(const vpPoint &P)
Definition: vpPose.cpp:93
@ DEMENTHON_LAGRANGE_VIRTUAL_VS
Definition: vpPose.h:99
@ VIRTUAL_VS
Definition: vpPose.h:93
bool computePose(vpPoseMethodType method, vpHomogeneousMatrix &cMo, bool(*func)(const vpHomogeneousMatrix &)=nullptr)
Definition: vpPose.cpp:340
void setStreamSettings(const rs::stream &stream, const rs::preset &preset)
vpCameraParameters getCameraParameters(const rs::stream &stream, vpCameraParameters::vpCameraParametersProjType type=vpCameraParameters::perspectiveProjWithDistortion) const
void acquire(std::vector< vpColVector > &pointcloud)
void setEnableStream(const rs::stream &stream, bool status)
void getVelocity(const vpRobot::vpControlFrameType frame, vpColVector &velocity)
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) vp_override
Control of Irisa's Viper S650 robot named Viper650.
@ ARTICULAR_FRAME
Definition: vpRobot.h:78
@ CAMERA_FRAME
Definition: vpRobot.h:82
@ STATE_VELOCITY_CONTROL
Initialize the velocity controller.
Definition: vpRobot.h:65
virtual vpRobotStateType setRobotState(const vpRobot::vpRobotStateType newState)
Definition: vpRobot.cpp:198
Implementation of a rotation matrix and operations on such kind of matrices.
static void display(const vpServo &s, const vpCameraParameters &cam, const vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:378
@ EYEINHAND_CAMERA
Definition: vpServo.h:155
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:329
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:169
void setLambda(double c)
Definition: vpServo.h:976
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:132
vpColVector getError() const
Definition: vpServo.h:504
@ PSEUDO_INVERSE
Definition: vpServo.h:229
vpColVector computeControlLaw()
Definition: vpServo.cpp:703
@ CURRENT
Definition: vpServo.h:196
Class that consider the case of a translation vector.
void display(vpImage< unsigned char > &I, const std::string &title)
Display a gray-scale image.