Visual Servoing Platform  version 3.6.1 under development (2025-02-18)
servoSimuCylinder2DCamVelocityDisplay.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See https://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * Simulation of a 2D visual servoing on a cylinder.
33  *
34 *****************************************************************************/
35 
46 #include <visp3/core/vpConfig.h>
47 #include <visp3/core/vpDebug.h>
48 
49 #if defined(VISP_HAVE_DISPLAY) && \
50  (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
51 
52 #include <stdio.h>
53 #include <stdlib.h>
54 
55 #include <visp3/core/vpCameraParameters.h>
56 #include <visp3/core/vpCylinder.h>
57 #include <visp3/core/vpHomogeneousMatrix.h>
58 #include <visp3/core/vpImage.h>
59 #include <visp3/core/vpMath.h>
60 #include <visp3/gui/vpDisplayFactory.h>
61 #include <visp3/io/vpParseArgv.h>
62 #include <visp3/robot/vpSimulatorCamera.h>
63 #include <visp3/visual_features/vpFeatureBuilder.h>
64 #include <visp3/visual_features/vpFeatureLine.h>
65 #include <visp3/vs/vpServo.h>
66 #include <visp3/vs/vpServoDisplay.h>
67 
68 // List of allowed command line options
69 #define GETOPTARGS "cdh"
70 
71 #ifdef ENABLE_VISP_NAMESPACE
72 using namespace VISP_NAMESPACE_NAME;
73 #endif
74 
75 void usage(const char *name, const char *badparam);
76 bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display);
77 
86 void usage(const char *name, const char *badparam)
87 {
88  fprintf(stdout, "\n\
89 Simulation of a 2D visual servoing on a cylinder:\n\
90 - eye-in-hand control law,\n\
91 - velocity computed in the camera frame,\n\
92 - display the camera view.\n\
93  \n\
94 SYNOPSIS\n\
95  %s [-c] [-d] [-h]\n",
96  name);
97 
98  fprintf(stdout, "\n\
99 OPTIONS: Default\n\
100  \n\
101  -c\n\
102  Disable the mouse click. Useful to automate the \n\
103  execution of this program without human intervention.\n\
104  \n\
105  -d \n\
106  Turn off the display.\n\
107  \n\
108  -h\n\
109  Print the help.\n");
110 
111  if (badparam)
112  fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
113 }
114 
126 bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display)
127 {
128  const char *optarg_;
129  int c;
130  while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
131 
132  switch (c) {
133  case 'c':
134  click_allowed = false;
135  break;
136  case 'd':
137  display = false;
138  break;
139  case 'h':
140  usage(argv[0], nullptr);
141  return false;
142 
143  default:
144  usage(argv[0], optarg_);
145  return false;
146  }
147  }
148 
149  if ((c == 1) || (c == -1)) {
150  // standalone param or error
151  usage(argv[0], nullptr);
152  std::cerr << "ERROR: " << std::endl;
153  std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
154  return false;
155  }
156 
157  return true;
158 }
159 
160 int main(int argc, const char **argv)
161 {
162 #if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11)
163  std::shared_ptr<vpDisplay> display;
164 #else
165  vpDisplay *display = nullptr;
166 #endif
167  try {
168  bool opt_display = true;
169  bool opt_click_allowed = true;
170 
171  // Read the command line options
172  if (getOptions(argc, argv, opt_click_allowed, opt_display) == false) {
173  return EXIT_FAILURE;
174  }
175 
176  vpImage<unsigned char> I(512, 512, 255);
177 
178  if (opt_display) {
179  try {
180  // Display size is automatically defined by the image (I) size
181 #if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11)
182  display = vpDisplayFactory::createDisplay(I, 100, 100, "Camera view...");
183 #else
184  display = vpDisplayFactory::allocateDisplay(I, 100, 100, "Camera view...");
185 #endif
186  // Display the image
187  // The image class has a member that specify a pointer toward
188  // the display that has been initialized in the display declaration
189  // therefore is is no longer necessary to make a reference to the
190  // display variable.
192  vpDisplay::flush(I);
193  }
194  catch (...) {
195  vpERROR_TRACE("Error while displaying the image");
196 #if (VISP_CXX_STANDARD < VISP_CXX_STANDARD_11)
197  if (display != nullptr) {
198  delete display;
199  }
200 #endif
201  return EXIT_FAILURE;
202  }
203  }
204 
205  double px, py;
206  px = py = 600;
207  double u0, v0;
208  u0 = v0 = 256;
209 
210  vpCameraParameters cam(px, py, u0, v0);
211 
212  vpServo task;
213  vpSimulatorCamera robot;
214 
215  // sets the initial camera location
216  vpHomogeneousMatrix cMo(-0.2, 0.1, 2, vpMath::rad(5), vpMath::rad(5), vpMath::rad(20));
217 
218  vpHomogeneousMatrix wMc, wMo;
219  robot.getPosition(wMc);
220  wMo = wMc * cMo; // Compute the position of the object in the world frame
221 
222  // sets the final camera location (for simulation purpose)
223  vpHomogeneousMatrix cMod(0, 0, 1, vpMath::rad(-60), vpMath::rad(0), vpMath::rad(0));
224 
225  // sets the cylinder coordinates in the world frame
226  vpCylinder cylinder(0, 1, 0, // direction
227  0, 0, 0, // point of the axis
228  0.1); // radius
229 
230  // sets the desired position of the visual feature
231  cylinder.track(cMod);
232  cylinder.print();
233 
234  vpFeatureLine ld[2];
235  for (unsigned int i = 0; i < 2; i++)
236  vpFeatureBuilder::create(ld[i], cylinder, i);
237 
238  // computes the cylinder coordinates in the camera frame and its 2D
239  // coordinates sets the current position of the visual feature
240  cylinder.track(cMo);
241  cylinder.print();
242 
243  vpFeatureLine l[2];
244  for (unsigned int i = 0; i < 2; i++) {
245  vpFeatureBuilder::create(l[i], cylinder, i);
246  l[i].print();
247  }
248 
249  // define the task
250  // - we want an eye-in-hand control law
251  // - robot is controlled in the camera frame
253  // task.setInteractionMatrixType(vpServo::CURRENT,
254  // vpServo::PSEUDO_INVERSE) ;
255  // it can also be interesting to test these possibilities
256  // task.setInteractionMatrixType(vpServo::MEAN,
257  // vpServo::PSEUDO_INVERSE) ;
259  // task.setInteractionMatrixType(vpServo::DESIRED, vpServo::TRANSPOSE) ;
260  // task.setInteractionMatrixType(vpServo::CURRENT, vpServo::TRANSPOSE) ;
261 
262  // - we want to see 2 lines on 2 lines
263  task.addFeature(l[0], ld[0]);
264  task.addFeature(l[1], ld[1]);
265 
266  vpServoDisplay::display(task, cam, I);
267  vpDisplay::flush(I);
268 
269  // Display task information
270  task.print();
271 
272  if (opt_display && opt_click_allowed) {
273  std::cout << "\n\nClick in the camera view window to start..." << std::endl;
275  }
276 
277  // - set the gain
278  task.setLambda(1);
279 
280  // Display task information
281  task.print();
282 
283  unsigned int iter = 0;
284  // loop
285  do {
286  std::cout << "---------------------------------------------" << iter++ << std::endl;
287  vpColVector v;
288 
289  // get the robot position
290  robot.getPosition(wMc);
291  // Compute the position of the object frame in the camera frame
292  cMo = wMc.inverse() * wMo;
293 
294  // new line position
295  // retrieve x,y and Z of the vpLine structure
296  cylinder.track(cMo);
297  // cylinder.print() ;
298  for (unsigned int i = 0; i < 2; i++) {
299  vpFeatureBuilder::create(l[i], cylinder, i);
300  // l[i].print() ;
301  }
302 
303  if (opt_display) {
305  vpServoDisplay::display(task, cam, I);
306  vpDisplay::flush(I);
307  }
308 
309  // compute the control law
310  v = task.computeControlLaw();
311 
312  // send the camera velocity to the controller
314 
315  std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
316 
317  // vpDisplay::getClick(I) ;
318  } while ((task.getError()).sumSquare() > 1e-9);
319 
320  if (opt_display && opt_click_allowed) {
321  vpDisplay::displayText(I, 20, 20, "Click to quit...", vpColor::black);
322  vpDisplay::flush(I);
324  }
325 
326  // Display task information
327  task.print();
328 #if (VISP_CXX_STANDARD < VISP_CXX_STANDARD_11)
329  if (display != nullptr) {
330  delete display;
331  }
332 #endif
333  return EXIT_SUCCESS;
334  }
335  catch (const vpException &e) {
336  std::cout << "Catch a ViSP exception: " << e << std::endl;
337 #if (VISP_CXX_STANDARD < VISP_CXX_STANDARD_11)
338  if (display != nullptr) {
339  delete display;
340  }
341 #endif
342  return EXIT_FAILURE;
343  }
344 }
345 
346 #elif !(defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
347 int main()
348 {
349  std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
350  return EXIT_SUCCESS;
351 }
352 #else
353 int main()
354 {
355  std::cout << "You do not have X11, or GTK, or GDI (Graphical Device Interface) or OpenCV functionalities to display "
356  "images..."
357  << std::endl;
358  std::cout << "Tip if you are on a unix-like system:" << std::endl;
359  std::cout << "- Install X11, configure again ViSP using cmake and build again this example" << std::endl;
360  std::cout << "Tip if you are on a windows-like system:" << std::endl;
361  std::cout << "- Install GDI, configure again ViSP using cmake and build again this example" << std::endl;
362  return EXIT_SUCCESS;
363 }
364 #endif
Generic class defining intrinsic camera parameters.
Implementation of column vector and the associated operations.
Definition: vpColVector.h:191
static const vpColor black
Definition: vpColor.h:192
Class that defines a 3D cylinder in the object frame and allows forward projection of a 3D cylinder i...
Definition: vpCylinder.h:101
Class that defines generic functionalities for display.
Definition: vpDisplay.h:178
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
static void display(const vpImage< unsigned char > &I)
static void flush(const vpImage< unsigned char > &I)
static void displayText(const vpImage< unsigned char > &I, const vpImagePoint &ip, const std::string &s, const vpColor &color)
error that can be emitted by ViSP classes.
Definition: vpException.h:60
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpImagePoint &t)
Class that defines a 2D line visual feature which is composed by two parameters that are and ,...
void print(unsigned int select=FEATURE_ALL) const VP_OVERRIDE
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
static double rad(double deg)
Definition: vpMath.h:129
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:70
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) VP_OVERRIDE
@ CAMERA_FRAME
Definition: vpRobot.h:84
static void display(const vpServo &s, const vpCameraParameters &cam, const vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:380
@ EYEINHAND_CAMERA
Definition: vpServo.h:161
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:331
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:171
void setLambda(double c)
Definition: vpServo.h:991
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:134
vpColVector getError() const
Definition: vpServo.h:515
@ PSEUDO_INVERSE
Definition: vpServo.h:235
vpColVector computeControlLaw()
Definition: vpServo.cpp:705
@ DESIRED
Definition: vpServo.h:208
Class that defines the simplest robot: a free flying camera.
std::shared_ptr< vpDisplay > createDisplay()
Return a smart pointer vpDisplay specialization if a GUI library is available or nullptr otherwise.
vpDisplay * allocateDisplay()
Return a newly allocated vpDisplay specialization if a GUI library is available or nullptr otherwise.