Visual Servoing Platform  version 3.6.1 under development (2024-12-12)
servoSimuCylinder2DCamVelocityDisplaySecondaryTask.cpp

Simulation of a 2D visual servoing:Simulation of a 2D visual servoing:

This example illustrates in one hand a classical visual servoing with a cylinder. And in the other hand it illustrates the behaviour of the robot when adding a secondary task.

/****************************************************************************
*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2023 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Simulation of a 2D visual servoing on a cylinder.
*
*****************************************************************************/
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <visp3/core/vpCameraParameters.h>
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpCylinder.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpMath.h>
#include <visp3/gui/vpDisplayD3D.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayGTK.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/gui/vpProjectionDisplay.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/robot/vpSimulatorCamera.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeatureLine.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>
// List of allowed command line options
#define GETOPTARGS "cdho"
#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif
void usage(const char *name, const char *badparam);
bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display);
void usage(const char *name, const char *badparam)
{
fprintf(stdout, "\n\
Simulation of a 2D visual servoing on a cylinder:\n\
- eye-in-hand control law,\n\
- velocity computed in the camera frame,\n\
- display the camera view.\n\
\n\
SYNOPSIS\n\
%s [-c] [-d] [-o] [-h]\n",
name);
fprintf(stdout, "\n\
OPTIONS: Default\n\
\n\
-c\n\
Disable the mouse click. Useful to automate the \n\
execution of this program without human intervention.\n\
\n\
-d \n\
Turn off the display.\n\
\n\
-o \n\
Disable new projection operator usage for secondary task.\n\
\n\
-h\n\
Print the help.\n");
if (badparam)
fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display, bool &new_proj_operator)
{
const char *optarg_;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
switch (c) {
case 'c':
click_allowed = false;
break;
case 'd':
display = false;
break;
case 'o':
new_proj_operator = false;
break;
case 'h':
usage(argv[0], nullptr);
return false;
default:
usage(argv[0], optarg_);
return false;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], nullptr);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
return false;
}
return true;
}
int main(int argc, const char **argv)
{
#if (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
try {
bool opt_display = true;
bool opt_click_allowed = true;
bool opt_new_proj_operator = true;
// Read the command line options
if (getOptions(argc, argv, opt_click_allowed, opt_display, opt_new_proj_operator) == false) {
return EXIT_FAILURE;
}
vpImage<unsigned char> Iint(512, 512, 0);
vpImage<unsigned char> Iext(512, 512, 0);
// We open a window if a display is available
#ifdef VISP_HAVE_DISPLAY
#if defined(VISP_HAVE_X11)
vpDisplayX displayInt;
vpDisplayX displayExt;
#elif defined(VISP_HAVE_GTK)
vpDisplayGTK displayInt;
vpDisplayGTK displayExt;
#elif defined(VISP_HAVE_GDI)
vpDisplayGDI displayInt;
vpDisplayGDI displayExt;
#elif defined(HAVE_OPENCV_HIGHGUI)
vpDisplayOpenCV displayInt;
vpDisplayOpenCV displayExt;
#elif defined(VISP_HAVE_D3D9)
vpDisplayD3D displayInt;
vpDisplayD3D displayExt;
#endif
#endif
if (opt_display) {
#ifdef VISP_HAVE_DISPLAY
// Display size is automatically defined by the image (Iint) and
// (Iext) size
displayInt.init(Iint, 100, 100, "Internal view");
displayExt.init(Iext, 130 + static_cast<int>(Iint.getWidth()), 100, "External view");
#endif
// Display the image
// The image class has a member that specify a pointer toward
// the display that has been initialized in the display declaration
// therefore is is no longer necessary to make a reference to the
// display variable.
}
#ifdef VISP_HAVE_DISPLAY
vpProjectionDisplay externalview;
#endif
// Set the camera parameters
double px, py;
px = py = 600;
double u0, v0;
u0 = v0 = 256;
vpCameraParameters cam(px, py, u0, v0);
vpServo task;
// sets the initial camera location
vpHomogeneousMatrix cMo(-0.2, 0.1, 2, vpMath::rad(5), vpMath::rad(5), vpMath::rad(20));
robot.getPosition(wMc);
wMo = wMc * cMo; // Compute the position of the object in the world frame
// sets the final camera location (for simulation purpose)
// sets the cylinder coordinates in the world frame
vpCylinder cylinder(0, 1, 0, // direction
0, 0, 0, // point of the axis
0.1); // radius
#ifdef VISP_HAVE_DISPLAY
externalview.insert(cylinder);
#endif
// sets the desired position of the visual feature
cylinder.track(cMod);
cylinder.print();
// Build the desired line features thanks to the cylinder and especially
// its paramaters in the image frame
for (unsigned int i = 0; i < 2; i++)
vpFeatureBuilder::create(ld[i], cylinder, i);
// computes the cylinder coordinates in the camera frame and its 2D
// coordinates sets the current position of the visual feature
cylinder.track(cMo);
cylinder.print();
// Build the current line features thanks to the cylinder and especially
// its paramaters in the image frame
for (unsigned int i = 0; i < 2; i++) {
vpFeatureBuilder::create(l[i], cylinder, i);
l[i].print();
}
// define the task
// - we want an eye-in-hand control law
// - robot is controlled in the camera frame
// it can also be interesting to test these possibilities
// task.setInteractionMatrixType(vpServo::CURRENT,vpServo::PSEUDO_INVERSE)
// ; task.setInteractionMatrixType(vpServo::MEAN, vpServo::PSEUDO_INVERSE)
// ; task.setInteractionMatrixType(vpServo::CURRENT,
// vpServo::PSEUDO_INVERSE) ;
// task.setInteractionMatrixType(vpServo::DESIRED, vpServo::TRANSPOSE) ;
// task.setInteractionMatrixType(vpServo::CURRENT, vpServo::TRANSPOSE) ;
// we want to see 2 lines on 2 lines
task.addFeature(l[0], ld[0]);
task.addFeature(l[1], ld[1]);
// Set the point of view of the external view
vpHomogeneousMatrix cextMo(0, 0, 6, vpMath::rad(40), vpMath::rad(10), vpMath::rad(60));
// Display the initial scene
vpServoDisplay::display(task, cam, Iint);
#ifdef VISP_HAVE_DISPLAY
externalview.display(Iext, cextMo, cMo, cam, vpColor::red);
#endif
// Display task information
task.print();
if (opt_display && opt_click_allowed) {
vpDisplay::displayText(Iint, 20, 20, "Click to start visual servo...", vpColor::white);
}
// set the gain
task.setLambda(1);
// Display task information
task.print();
unsigned int iter = 0;
bool stop = false;
bool start_secondary_task = false;
while (!stop) {
std::cout << "---------------------------------------------" << iter++ << std::endl;
// get the robot position
robot.getPosition(wMc);
// Compute the position of the object frame in the camera frame
cMo = wMc.inverse() * wMo;
// new line position
// retrieve x,y and Z of the vpLine structure
// Compute the parameters of the cylinder in the camera frame and in the
// image frame
cylinder.track(cMo);
// Build the current line features thanks to the cylinder and especially
// its paramaters in the image frame
for (unsigned int i = 0; i < 2; i++) {
vpFeatureBuilder::create(l[i], cylinder, i);
}
// Display the current scene
if (opt_display) {
vpServoDisplay::display(task, cam, Iint);
#ifdef VISP_HAVE_DISPLAY
externalview.display(Iext, cextMo, cMo, cam, vpColor::red);
#endif
}
// compute the control law
// Wait primary task convergence before considering secondary task
if (task.getError().sumSquare() < 1e-6) {
start_secondary_task = true;
}
if (start_secondary_task) {
// In this example the secondary task is cut in four
// steps. The first one consists in imposing a movement of the robot along
// the x axis of the object frame with a velocity of 0.5. The second one
// consists in imposing a movement of the robot along the y axis of the
// object frame with a velocity of 0.5. The third one consists in imposing a
// movement of the robot along the x axis of the object frame with a
// velocity of -0.5. The last one consists in imposing a movement of the
// robot along the y axis of the object frame with a velocity of -0.5.
// Each steps is made during 200 iterations.
vpColVector e1(6);
vpColVector e2(6);
vpColVector proj_e1;
vpColVector proj_e2;
static unsigned int iter_sec = 0;
double rapport = 0;
double vitesse = 0.5;
unsigned int tempo = 800;
if (iter_sec > tempo) {
stop = true;
}
if (iter_sec % tempo < 200) {
e2 = 0;
e1[0] = fabs(vitesse);
proj_e1 = task.secondaryTask(e1, opt_new_proj_operator);
rapport = vitesse / proj_e1[0];
proj_e1 *= rapport;
v += proj_e1;
}
if (iter_sec % tempo < 400 && iter_sec % tempo >= 200) {
e1 = 0;
e2[1] = fabs(vitesse);
proj_e2 = task.secondaryTask(e2, opt_new_proj_operator);
rapport = vitesse / proj_e2[1];
proj_e2 *= rapport;
v += proj_e2;
}
if (iter_sec % tempo < 600 && iter_sec % tempo >= 400) {
e2 = 0;
e1[0] = -fabs(vitesse);
proj_e1 = task.secondaryTask(e1, opt_new_proj_operator);
rapport = -vitesse / proj_e1[0];
proj_e1 *= rapport;
v += proj_e1;
}
if (iter_sec % tempo < 800 && iter_sec % tempo >= 600) {
e1 = 0;
e2[1] = -fabs(vitesse);
proj_e2 = task.secondaryTask(e2, opt_new_proj_operator);
rapport = -vitesse / proj_e2[1];
proj_e2 *= rapport;
v += proj_e2;
}
if (opt_display && opt_click_allowed) {
std::stringstream ss;
ss << std::string("New projection operator: ") +
(opt_new_proj_operator ? std::string("yes (use option -o to use old one)") : std::string("no"));
vpDisplay::displayText(Iint, 20, 20, "Secondary task enabled: yes", vpColor::white);
vpDisplay::displayText(Iint, 40, 20, ss.str(), vpColor::white);
}
iter_sec++;
}
else {
if (opt_display && opt_click_allowed) {
vpDisplay::displayText(Iint, 20, 20, "Secondary task: no", vpColor::white);
}
}
// send the camera velocity to the controller
std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
if (opt_display) {
vpDisplay::displayText(Iint, 60, 20, "Click to stop visual servo...", vpColor::white);
if (vpDisplay::getClick(Iint, false)) {
stop = true;
}
}
iter++;
}
if (opt_display && opt_click_allowed) {
vpServoDisplay::display(task, cam, Iint);
vpDisplay::displayText(Iint, 20, 20, "Click to quit...", vpColor::white);
}
// Display task information
task.print();
return EXIT_SUCCESS;
}
catch (const vpException &e) {
std::cout << "Catch a ViSP exception: " << e << std::endl;
return EXIT_FAILURE;
}
#else
(void)argc;
(void)argv;
std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
return EXIT_SUCCESS;
#endif
}
Generic class defining intrinsic camera parameters.
Implementation of column vector and the associated operations.
Definition: vpColVector.h:191
double sumSquare() const
static const vpColor white
Definition: vpColor.h:212
static const vpColor red
Definition: vpColor.h:217
Class that defines a 3D cylinder in the object frame and allows forward projection of a 3D cylinder i...
Definition: vpCylinder.h:101
Display for windows using Direct3D 3rd party. Thus to enable this class Direct3D should be installed....
Definition: vpDisplayD3D.h:106
Display for windows using GDI (available on any windows 32 platform).
Definition: vpDisplayGDI.h:130
The vpDisplayGTK allows to display image using the GTK 3rd party library. Thus to enable this class G...
Definition: vpDisplayGTK.h:133
The vpDisplayOpenCV allows to display image using the OpenCV library. Thus to enable this class OpenC...
void init(vpImage< unsigned char > &I, int winx=-1, int winy=-1, const std::string &title="") VP_OVERRIDE
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
static void display(const vpImage< unsigned char > &I)
static void flush(const vpImage< unsigned char > &I)
static void displayText(const vpImage< unsigned char > &I, const vpImagePoint &ip, const std::string &s, const vpColor &color)
error that can be emitted by ViSP classes.
Definition: vpException.h:60
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpImagePoint &t)
Class that defines a 2D line visual feature which is composed by two parameters that are and ,...
void print(unsigned int select=FEATURE_ALL) const VP_OVERRIDE
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
static double rad(double deg)
Definition: vpMath.h:129
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:70
interface with the image for feature display
void insert(vpForwardProjection &fp)
void display(vpImage< unsigned char > &I, const vpHomogeneousMatrix &cextMo, const vpHomogeneousMatrix &cMo, const vpCameraParameters &cam, const vpColor &color, const bool &displayTraj=false, unsigned int thickness=1)
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) VP_OVERRIDE
@ CAMERA_FRAME
Definition: vpRobot.h:84
static void display(const vpServo &s, const vpCameraParameters &cam, const vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:380
@ EYEINHAND_CAMERA
Definition: vpServo.h:161
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:331
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:171
void setLambda(double c)
Definition: vpServo.h:986
vpColVector secondaryTask(const vpColVector &de2dt, const bool &useLargeProjectionOperator=false)
Definition: vpServo.cpp:1089
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:134
vpColVector getError() const
Definition: vpServo.h:510
@ PSEUDO_INVERSE
Definition: vpServo.h:235
vpColVector computeControlLaw()
Definition: vpServo.cpp:705
@ DESIRED
Definition: vpServo.h:208
Class that defines the simplest robot: a free flying camera.