Visual Servoing Platform  version 3.6.1 under development (2024-12-17)
servoAfma6Segment2DCamVelocity.cpp

Example of eye-in-hand control law. We control here a real robot, the Afma6 robot (cartesian robot, with 6 degrees of freedom). The velocity is computed in camera frame. The visual feature is the segment between two points.

/*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2024 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* tests the control law
* eye-in-hand control
* velocity computed in the camera frame
*/
#include <stdlib.h>
#include <vector>
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpDebug.h> // Debug trace
#if (defined(VISP_HAVE_AFMA6) && defined(VISP_HAVE_DC1394))
#include <visp3/blob/vpDot.h>
#include <visp3/core/vpDisplay.h>
#include <visp3/core/vpException.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpImagePoint.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/core/vpMath.h>
#include <visp3/core/vpPoint.h>
#include <visp3/gui/vpDisplayGTK.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/robot/vpRobotAfma6.h>
#include <visp3/sensor/vpRealSense2.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeatureSegment.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>
int main()
{
#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif
// Log file creation in /tmp/$USERNAME/log.dat
// This file contains by line:
// - the 6 computed cam velocities (m/s, rad/s) to achieve the task
// - the 6 measured joint velocities (m/s, rad/s)
// - the 6 measured joint positions (m, rad)
// - the 2 values of s - s*
std::string username;
// Get the user login name
// Create a log filename to save velocities...
std::string logdirname;
logdirname = "/tmp/" + username;
// Test if the output path exist. If no try to create it
if (vpIoTools::checkDirectory(logdirname) == false) {
try {
// Create the dirname
}
catch (...) {
std::cerr << std::endl << "ERROR:" << std::endl;
std::cerr << " Cannot create " << logdirname << std::endl;
return EXIT_FAILURE;
}
}
std::string logfilename;
logfilename = logdirname + "/log.dat";
// Open the log file name
std::ofstream flog(logfilename.c_str());
try {
vpServo task;
rs2::config config;
unsigned int width = 640, height = 480, fps = 60;
config.enable_stream(RS2_STREAM_COLOR, width, height, RS2_FORMAT_RGBA8, fps);
config.enable_stream(RS2_STREAM_DEPTH, width, height, RS2_FORMAT_Z16, fps);
config.enable_stream(RS2_STREAM_INFRARED, width, height, RS2_FORMAT_Y8, fps);
rs.open(config);
// Warm up camera
for (size_t i = 0; i < 10; ++i) {
rs.acquire(I);
}
#ifdef VISP_HAVE_X11
vpDisplayX display(I, 100, 100, "Current image");
#elif defined(HAVE_OPENCV_HIGHGUI)
vpDisplayOpenCV display(I, 100, 100, "Current image");
#elif defined(VISP_HAVE_GTK)
vpDisplayGTK display(I, 100, 100, "Current image");
#endif
std::vector<vpDot> dot_d(2), dot(2);
vpFeatureSegment seg_d, seg;
vpRobotAfma6 robot;
// Get camera intrinsics
robot.getCameraParameters(cam, I);
std::cout << "Define the initial segment" << std::endl;
for (std::vector<vpDot>::iterator i = dot.begin(); i != dot.end(); ++i) {
std::cout << "Click on a dot..." << std::endl;
i->initTracking(I);
cog = i->getCog();
}
vpFeatureBuilder::create(seg, cam, dot[0], dot[1]);
seg.display(cam, I, vpColor::red);
std::cout << "define the destination segment" << std::endl;
for (std::vector<vpDot>::iterator i = dot_d.begin(); i != dot_d.end(); ++i) {
*i = vpDot(ip);
}
vpFeatureBuilder::create(seg_d, cam, dot_d[0], dot_d[1]);
seg_d.setZ1(1.);
seg_d.setZ2(1.);
seg_d.display(cam, I);
// define the task
// - we want an eye-in-hand control law
// - robot is controlled in the camera frame
// - we want to see both segments
task.addFeature(seg, seg_d);
// - set the constant gain
task.setLambda(0.8);
// Display task information
task.print();
// Now the robot will be controlled in velocity
std::cout << "\nHit CTRL-C to stop the loop...\n" << std::flush;
bool quit = false;
while (!quit) {
// Acquire a new image from the camera
rs.acquire(I);
// Display this image
// Achieve the tracking of the dot in the image
for (std::vector<vpDot>::iterator i = dot.begin(); i != dot.end(); ++i) {
i->track(I);
}
// Update the segment feature from the dot locations
vpFeatureBuilder::create(seg, cam, dot[0], dot[1]);
// Compute the visual servoing skew vector
v = task.computeControlLaw();
// Display the current and desired feature segments in the image display
vpServoDisplay::display(task, cam, I);
// Apply the computed joint velocities to the robot
// Save feature error (s-s*) for the feature segment. For this feature
// segments, we have 4 errors (Xc,Yc,l,alpha).
flog << (task.getError()).t() << std::endl;
vpDisplay::displayText(I, 20, 20, "Click to quit...", vpColor::red);
if (vpDisplay::getClick(I, false)) {
quit = true;
}
// Flush the display
}
// Close the log file
flog.close();
// Display task information
task.print();
return EXIT_SUCCESS;
}
catch (const vpException &e) {
// Close the log file
flog.close();
std::cout << "Visual servo failed with exception: " << e << std::endl;
return EXIT_FAILURE;
}
}
#else
int main()
{
std::cout << "You do not have an afma6 robot connected to your computer..." << std::endl;
return EXIT_SUCCESS;
}
#endif
@ TOOL_INTEL_D435_CAMERA
Definition: vpAfma6.h:131
Generic class defining intrinsic camera parameters.
@ perspectiveProjWithoutDistortion
Perspective projection without distortion model.
Implementation of column vector and the associated operations.
Definition: vpColVector.h:191
static const vpColor red
Definition: vpColor.h:217
static const vpColor blue
Definition: vpColor.h:223
static const vpColor green
Definition: vpColor.h:220
The vpDisplayGTK allows to display image using the GTK 3rd party library. Thus to enable this class G...
Definition: vpDisplayGTK.h:133
The vpDisplayOpenCV allows to display image using the OpenCV library. Thus to enable this class OpenC...
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
static void display(const vpImage< unsigned char > &I)
static void displayCross(const vpImage< unsigned char > &I, const vpImagePoint &ip, unsigned int size, const vpColor &color, unsigned int thickness=1)
static void flush(const vpImage< unsigned char > &I)
static void displayText(const vpImage< unsigned char > &I, const vpImagePoint &ip, const std::string &s, const vpColor &color)
This tracker is meant to track a dot (connected pixels with same gray level) on a vpImage.
Definition: vpDot.h:116
error that can be emitted by ViSP classes.
Definition: vpException.h:60
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpImagePoint &t)
Class that defines a 2D segment visual features. This class allow to consider two sets of visual feat...
void display(const vpCameraParameters &cam, const vpImage< unsigned char > &I, const vpColor &color=vpColor::green, unsigned int thickness=1) const VP_OVERRIDE
void setZ2(double val)
void setZ1(double val)
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:82
static bool checkDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:396
static std::string getUserName()
Definition: vpIoTools.cpp:285
static void makeDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:550
void acquire(vpImage< unsigned char > &grey, double *ts=nullptr)
bool open(const rs2::config &cfg=rs2::config())
Control of Irisa's gantry robot named Afma6.
Definition: vpRobotAfma6.h:212
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) VP_OVERRIDE
@ CAMERA_FRAME
Definition: vpRobot.h:84
@ STATE_VELOCITY_CONTROL
Initialize the velocity controller.
Definition: vpRobot.h:67
virtual vpRobotStateType setRobotState(const vpRobot::vpRobotStateType newState)
Definition: vpRobot.cpp:202
static void display(const vpServo &s, const vpCameraParameters &cam, const vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:380
@ EYEINHAND_CAMERA
Definition: vpServo.h:161
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:331
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:171
void setLambda(double c)
Definition: vpServo.h:986
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:134
vpColVector getError() const
Definition: vpServo.h:510
vpColVector computeControlLaw()
Definition: vpServo.cpp:705
@ DESIRED
Definition: vpServo.h:208