Visual Servoing Platform  version 3.6.1 under development (2024-05-09)
simulateFourPoints2DCartesianCamVelocity.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See https://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * Simulation of a visual servoing with visualization.
33  *
34 *****************************************************************************/
35 
48 #include <visp3/core/vpConfig.h>
49 #include <visp3/core/vpDebug.h>
50 
51 #ifdef VISP_HAVE_COIN3D_AND_GUI
52 
53 #include <visp3/ar/vpSimulator.h>
54 #include <visp3/core/vpCameraParameters.h>
55 #include <visp3/core/vpHomogeneousMatrix.h>
56 #include <visp3/core/vpImage.h>
57 #include <visp3/core/vpIoTools.h>
58 #include <visp3/core/vpMath.h>
59 #include <visp3/core/vpTime.h>
60 #include <visp3/io/vpParseArgv.h>
61 #include <visp3/robot/vpSimulatorCamera.h>
62 #include <visp3/visual_features/vpFeatureBuilder.h>
63 #include <visp3/visual_features/vpFeaturePoint.h>
64 #include <visp3/vs/vpServo.h>
65 
66 #define GETOPTARGS "di:h"
67 #define SAVE 0
68 
78 void usage(const char *name, const char *badparam, std::string ipath)
79 {
80  fprintf(stdout, "\n\
81 Simulation Servo 4points.\n\
82  \n\
83 SYNOPSIS\n\
84  %s [-i <input image path>] [-d] [-h]\n",
85  name);
86 
87  fprintf(stdout, "\n\
88 OPTIONS: Default\n\
89  -i <input image path> %s\n\
90  Set image input path.\n\
91  From this path read \"iv/4points.iv\"\n\
92  cad model.\n\
93  Setting the VISP_INPUT_IMAGE_PATH environment\n\
94  variable produces the same behaviour than using\n\
95  this option.\n\
96  \n\
97  -d \n\
98  Disable the image display. This can be useful \n\
99  for automatic tests using crontab under Unix or \n\
100  using the task manager under Windows.\n\
101  \n\
102  -h\n\
103  Print the help.\n\n",
104  ipath.c_str());
105 
106  if (badparam)
107  fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
108 }
109 
125 bool getOptions(int argc, const char **argv, std::string &ipath, bool &display)
126 {
127  const char *optarg;
128  int c;
129  while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg)) > 1) {
130 
131  switch (c) {
132  case 'i':
133  ipath = optarg;
134  break;
135  case 'd':
136  display = false;
137  break;
138  case 'h':
139  usage(argv[0], nullptr, ipath);
140  return false;
141  break;
142 
143  default:
144  usage(argv[0], optarg, ipath);
145  return false;
146  break;
147  }
148  }
149 
150  if ((c == 1) || (c == -1)) {
151  // standalone param or error
152  usage(argv[0], nullptr, ipath);
153  std::cerr << "ERROR: " << std::endl;
154  std::cerr << " Bad argument " << optarg << std::endl << std::endl;
155  return false;
156  }
157 
158  return true;
159 }
160 
161 static void *mainLoop(void *_simu)
162 {
163  vpSimulator *simu = static_cast<vpSimulator *>(_simu);
164  simu->initMainApplication();
165 
166  vpServo task;
167  vpSimulatorCamera robot;
168 
169  float sampling_time = 0.040f; // Sampling period in second
170  robot.setSamplingTime(sampling_time);
171 
172  std::cout << std::endl;
173  std::cout << "-------------------------------------------------------" << std::endl;
174  std::cout << " Test program for vpServo " << std::endl;
175  std::cout << " Eye-in-hand task control, articular velocities are computed" << std::endl;
176  std::cout << " Simulation " << std::endl;
177  std::cout << " task : servo 4 points " << std::endl;
178  std::cout << "-------------------------------------------------------" << std::endl;
179  std::cout << std::endl;
180 
181  // Sets the initial camera location
182  vpPoseVector vcMo;
183 
184  vcMo[0] = 0.3;
185  vcMo[1] = 0.2;
186  vcMo[2] = 3;
187  vcMo[3] = 0;
188  vcMo[4] = vpMath::rad(0);
189  vcMo[5] = vpMath::rad(40);
190 
191  vpHomogeneousMatrix cMo(vcMo);
192  vpHomogeneousMatrix wMo; // Set to identity
193  vpHomogeneousMatrix wMc; // Camera location in world frame
194  wMc = wMo * cMo.inverse();
195  robot.setPosition(wMc);
196  simu->setCameraPosition(cMo);
197 
198  simu->getCameraPosition(cMo);
199  wMc = wMo * cMo.inverse();
200  robot.setPosition(wMc);
201  robot.setMaxTranslationVelocity(4.);
202 
203  vpCameraParameters cam;
204 
205  // Sets the point coordinates in the world frame
206  vpPoint point[4];
207  point[0].setWorldCoordinates(-0.1, -0.1, 0);
208  point[1].setWorldCoordinates(0.1, -0.1, 0);
209  point[2].setWorldCoordinates(0.1, 0.1, 0);
210  point[3].setWorldCoordinates(-0.1, 0.1, 0);
211 
212  // Project : computes the point coordinates in the camera frame and its 2D
213  // coordinates
214  for (int i = 0; i < 4; i++)
215  point[i].track(cMo);
216 
217  // Sets the desired position of the point
218  vpFeaturePoint p[4];
219  for (int i = 0; i < 4; i++)
220  vpFeatureBuilder::create(p[i], point[i]); // retrieve x,y and Z of the vpPoint structure
221 
222  // Sets the desired position of the point
223  vpFeaturePoint pd[4];
224 
225  pd[0].buildFrom(-0.1, -0.1, 1);
226  pd[1].buildFrom(0.1, -0.1, 1);
227  pd[2].buildFrom(0.1, 0.1, 1);
228  pd[3].buildFrom(-0.1, 0.1, 1);
229 
230  // Define the task
231  // We want an eye-in-hand control law
232  // Articular velocity are computed
235 
236  // Set the position of the end-effector frame in the camera frame as identity
238  vpVelocityTwistMatrix cVe(cMe);
239  task.set_cVe(cVe);
240 
241  // Set the Jacobian (expressed in the end-effector frame)
242  vpMatrix eJe;
243  robot.get_eJe(eJe);
244  task.set_eJe(eJe);
245 
246  // We want to see a point on a point
247  for (int i = 0; i < 4; i++)
248  task.addFeature(p[i], pd[i]);
249 
250  // Set the gain
251  task.setLambda(1.0);
252 
253  std::cout << "Display task information" << std::endl;
254  task.print();
255 
256  vpTime::wait(1000); // Sleep 1s to ensure that all the thread are initialized
257 
258  unsigned int iter = 0;
259  // visual servo loop
260  while (iter++ < 100) {
261  double t = vpTime::measureTimeMs();
262 
263  vpColVector v;
264 
265  robot.get_eJe(eJe);
266  task.set_eJe(eJe);
267 
268  wMc = robot.getPosition();
269  cMo = wMc.inverse() * wMo;
270  for (int i = 0; i < 4; i++) {
271  point[i].track(cMo);
272  vpFeatureBuilder::create(p[i], point[i]);
273  }
274 
275  v = task.computeControlLaw();
277 
278  simu->setCameraPosition(cMo);
279 
280  if (SAVE == 1) {
281  char name[FILENAME_MAX];
282  snprintf(name, FILENAME_MAX, "/tmp/image.%04u.external.png", iter);
283  std::cout << name << std::endl;
284  simu->write(name);
285  snprintf(name, FILENAME_MAX, "/tmp/image.%04u.internal.png", iter);
286  simu->write(name);
287  }
288 
289  vpTime::wait(t, sampling_time * 1000); // Wait 40 ms
290  }
291  std::cout << "\nDisplay task information" << std::endl;
292  task.print();
293 
294  simu->closeMainApplication();
295 
296  void *a = nullptr;
297  return a;
298 }
299 
300 int main(int argc, const char **argv)
301 {
302  try {
303  std::string env_ipath;
304  std::string opt_ipath;
305  std::string ipath;
306  std::string filename;
307  bool opt_display = true;
308 
309  // Get the visp-images-data package path or VISP_INPUT_IMAGE_PATH
310  // environment variable value
311  env_ipath = vpIoTools::getViSPImagesDataPath();
312 
313  // Set the default input path
314  if (!env_ipath.empty())
315  ipath = env_ipath;
316 
317  // Read the command line options
318  if (getOptions(argc, argv, opt_ipath, opt_display) == false) {
319  return EXIT_FAILURE;
320  }
321 
322  // Get the option values
323  if (!opt_ipath.empty())
324  ipath = opt_ipath;
325 
326  // Compare ipath and env_ipath. If they differ, we take into account
327  // the input path coming from the command line option
328  if (!opt_ipath.empty() && !env_ipath.empty()) {
329  if (ipath != env_ipath) {
330  std::cout << std::endl << "WARNING: " << std::endl;
331  std::cout << " Since -i <visp image path=" << ipath << "> "
332  << " is different from VISP_IMAGE_PATH=" << env_ipath << std::endl
333  << " we skip the environment variable." << std::endl;
334  }
335  }
336 
337  // Test if an input path is set
338  if (opt_ipath.empty() && env_ipath.empty()) {
339  usage(argv[0], nullptr, ipath);
340  std::cerr << std::endl << "ERROR:" << std::endl;
341  std::cerr << " Use -i <visp image path> option or set VISP_INPUT_IMAGE_PATH " << std::endl
342  << " environment variable to specify the location of the " << std::endl
343  << " image path where test images are located." << std::endl
344  << std::endl;
345  return EXIT_FAILURE;
346  }
347 
348  vpCameraParameters cam;
350  fMo[2][3] = 0;
351 
352  if (opt_display) {
353  vpSimulator simu;
354  simu.initInternalViewer(300, 300);
355  simu.initExternalViewer(300, 300);
356 
357  vpTime::wait(1000);
358  simu.setZoomFactor(1.0f);
359 
360  // Load the cad model
361  filename = vpIoTools::createFilePath(ipath, "iv/4points.iv");
362  simu.load(filename.c_str());
363 
364  simu.setInternalCameraParameters(cam);
365  simu.setExternalCameraParameters(cam);
366  simu.initApplication(&mainLoop);
367 
368  simu.mainLoop();
369  }
370  return EXIT_SUCCESS;
371  }
372  catch (const vpException &e) {
373  std::cout << "Catch an exception: " << e << std::endl;
374  return EXIT_FAILURE;
375  }
376 }
377 
378 #else
379 int main()
380 {
381  std::cout << "You do not have Coin3D and SoQT or SoWin or SoXt functionalities enabled..." << std::endl;
382  std::cout << "Tip:" << std::endl;
383  std::cout
384  << "- Install Coin3D and SoQT or SoWin or SoXt, configure ViSP again using cmake and build again this example"
385  << std::endl;
386  return EXIT_SUCCESS;
387 }
388 #endif
Generic class defining intrinsic camera parameters.
Implementation of column vector and the associated operations.
Definition: vpColVector.h:163
error that can be emitted by ViSP classes.
Definition: vpException.h:59
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
void buildFrom(double x, double y, double Z)
void track(const vpHomogeneousMatrix &cMo)
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
static std::string getViSPImagesDataPath()
Definition: vpIoTools.cpp:1832
static std::string createFilePath(const std::string &parent, const std::string &child)
Definition: vpIoTools.cpp:2195
static double rad(double deg)
Definition: vpMath.h:127
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:146
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:69
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:77
void setWorldCoordinates(double oX, double oY, double oZ)
Definition: vpPoint.cpp:110
Implementation of a pose vector and operations on poses.
Definition: vpPoseVector.h:189
void get_eJe(vpMatrix &eJe) vp_override
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) vp_override
@ CAMERA_FRAME
Definition: vpRobot.h:82
void setMaxTranslationVelocity(double maxVt)
Definition: vpRobot.cpp:236
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:378
@ EYEINHAND_L_cVe_eJe
Definition: vpServo.h:162
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:329
void set_cVe(const vpVelocityTwistMatrix &cVe_)
Definition: vpServo.h:1028
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:169
void setLambda(double c)
Definition: vpServo.h:976
void set_eJe(const vpMatrix &eJe_)
Definition: vpServo.h:1091
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:132
vpColVector computeControlLaw()
Definition: vpServo.cpp:703
@ CURRENT
Definition: vpServo.h:196
Class that defines the simplest robot: a free flying camera.
Implementation of a simulator based on Coin3d (www.coin3d.org).
Definition: vpSimulator.h:99
void load(const char *file_name)
load an iv file
void setInternalCameraParameters(vpCameraParameters &cam)
set internal camera parameters
virtual void mainLoop()
activate the mainloop
void setExternalCameraParameters(vpCameraParameters &cam)
set external camera parameters
void initMainApplication()
perform some initialization in the main program thread
void initApplication(void *(*start_routine)(void *))
begin the main program
void getCameraPosition(vpHomogeneousMatrix &_cMf)
get the camera position (from an homogeneous matrix)
Definition: vpSimulator.h:248
void setZoomFactor(float zoom)
set the size of the camera/frame
void setCameraPosition(vpHomogeneousMatrix &cMf)
set the camera position (from an homogeneous matrix)
void initExternalViewer(unsigned int nlig, unsigned int ncol)
initialize the external view
void write(const char *fileName)
virtual void initInternalViewer(unsigned int nlig, unsigned int ncol)
initialize the camera view
void closeMainApplication()
void display(vpImage< unsigned char > &I, const std::string &title)
Display a gray-scale image.
VISP_EXPORT int wait(double t0, double t)
VISP_EXPORT double measureTimeMs()