Visual Servoing Platform  version 3.6.1 under development (2024-04-26)
servoSimuFourPoints2DCamVelocity.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See https://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * Simulation of a 2D visual servoing using 4 points as visual feature.
33  *
34 *****************************************************************************/
35 
50 #include <stdio.h>
51 #include <stdlib.h>
52 
53 #include <visp3/core/vpConfig.h>
54 #include <visp3/core/vpHomogeneousMatrix.h>
55 #include <visp3/core/vpMath.h>
56 #include <visp3/io/vpParseArgv.h>
57 #include <visp3/robot/vpSimulatorCamera.h>
58 #include <visp3/visual_features/vpFeatureBuilder.h>
59 #include <visp3/visual_features/vpFeaturePoint.h>
60 #include <visp3/vs/vpServo.h>
61 
62 // List of allowed command line options
63 #define GETOPTARGS "h"
64 
65 void usage(const char *name, const char *badparam);
66 bool getOptions(int argc, const char **argv);
67 
76 void usage(const char *name, const char *badparam)
77 {
78  fprintf(stdout, "\n\
79 Simulation of a 2D visual servoing:\n\
80 - servo on 4 points,\n\
81 - eye-in-hand control law,\n\
82 - articular velocity are computed,\n\
83 - without display.\n\
84  \n\
85 SYNOPSIS\n\
86  %s [-h]\n",
87  name);
88 
89  fprintf(stdout, "\n\
90 OPTIONS: Default\n\
91  \n\
92  -h\n\
93  Print the help.\n");
94 
95  if (badparam) {
96  fprintf(stderr, "ERROR: \n");
97  fprintf(stderr, "\nBad parameter [%s]\n", badparam);
98  }
99 }
100 
111 bool getOptions(int argc, const char **argv)
112 {
113  const char *optarg_;
114  int c;
115  while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
116 
117  switch (c) {
118  case 'h':
119  usage(argv[0], nullptr);
120  return false;
121 
122  default:
123  usage(argv[0], optarg_);
124  return false;
125  }
126  }
127 
128  if ((c == 1) || (c == -1)) {
129  // standalone param or error
130  usage(argv[0], nullptr);
131  std::cerr << "ERROR: " << std::endl;
132  std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
133  return false;
134  }
135 
136  return true;
137 }
138 
139 int main(int argc, const char **argv)
140 {
141 #if (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
142  try {
143  // Read the command line options
144  if (getOptions(argc, argv) == false) {
145  return EXIT_FAILURE;
146  }
147 
148  vpServo task;
149  vpSimulatorCamera robot;
150 
151  std::cout << std::endl;
152  std::cout << "-------------------------------------------------------" << std::endl;
153  std::cout << " Test program for vpServo " << std::endl;
154  std::cout << " Eye-in-hand task control, articular velocity are computed" << std::endl;
155  std::cout << " Simulation " << std::endl;
156  std::cout << " task : servo 4 points " << std::endl;
157  std::cout << "-------------------------------------------------------" << std::endl;
158  std::cout << std::endl;
159 
160  // sets the initial camera location with respect to the object
162  cMo[0][3] = 0.1;
163  cMo[1][3] = 0.2;
164  cMo[2][3] = 2;
165 
166  // Compute the position of the object in the world frame
167  vpHomogeneousMatrix wMc, wMo;
168  robot.getPosition(wMc);
169  wMo = wMc * cMo;
170 
171  // sets the point coordinates in the object frame
172  vpPoint point[4];
173  point[0].setWorldCoordinates(-1, -1, 0);
174  point[1].setWorldCoordinates(1, -1, 0);
175  point[2].setWorldCoordinates(1, 1, 0);
176  point[3].setWorldCoordinates(-1, 1, 0);
177 
178  // computes the point coordinates in the camera frame and its 2D
179  // coordinates
180  for (unsigned int i = 0; i < 4; i++)
181  point[i].track(cMo);
182 
183  // sets the desired position of the point
184  vpFeaturePoint p[4];
185  for (unsigned int i = 0; i < 4; i++)
186  vpFeatureBuilder::create(p[i], point[i]); // retrieve x,y and Z of the vpPoint structure
187 
188  // sets the desired position of the point
189  vpFeaturePoint pd[4];
190 
191  pd[0].buildFrom(-0.1, -0.1, 1);
192  pd[1].buildFrom(0.1, -0.1, 1);
193  pd[2].buildFrom(0.1, 0.1, 1);
194  pd[3].buildFrom(-0.1, 0.1, 1);
195 
196  // define the task
197  // - we want an eye-in-hand control law
198  // - articular velocity are computed
201 
202  // Set the position of the end-effector frame in the camera frame as identity
204  vpVelocityTwistMatrix cVe(cMe);
205  task.set_cVe(cVe);
206 
207  // Set the Jacobian (expressed in the end-effector frame)
208  vpMatrix eJe;
209  robot.get_eJe(eJe);
210  task.set_eJe(eJe);
211 
212  // we want to see a point on a point
213  for (unsigned int i = 0; i < 4; i++)
214  task.addFeature(p[i], pd[i]);
215 
216  // set the gain
217  task.setLambda(1);
218 
219  // Display task information
220  task.print();
221 
222  unsigned int iter = 0;
223  // loop
224  while (iter++ < 1500) {
225  std::cout << "---------------------------------------------" << iter << std::endl;
226  vpColVector v;
227 
228  // Set the Jacobian (expressed in the end-effector frame)
229  // since q is modified eJe is modified
230  robot.get_eJe(eJe);
231  task.set_eJe(eJe);
232 
233  // get the robot position
234  robot.getPosition(wMc);
235  // Compute the position of the object frame in the camera frame
236  cMo = wMc.inverse() * wMo;
237 
238  // update new point position and corresponding features
239  for (unsigned int i = 0; i < 4; i++) {
240  point[i].track(cMo);
241  // retrieve x,y and Z of the vpPoint structure
242  vpFeatureBuilder::create(p[i], point[i]);
243  }
244  // since vpServo::MEAN interaction matrix is used, we need also to
245  // update the desired features at each iteration
246  pd[0].buildFrom(-0.1, -0.1, 1);
247  pd[1].buildFrom(0.1, -0.1, 1);
248  pd[2].buildFrom(0.1, 0.1, 1);
249  pd[3].buildFrom(-0.1, 0.1, 1);
250 
251  // compute the control law ") ;
252  v = task.computeControlLaw();
253 
254  // send the camera velocity to the controller ") ;
256 
257  std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
258  }
259 
260  // Display task information
261  task.print();
262  return EXIT_SUCCESS;
263  } catch (const vpException &e) {
264  std::cout << "Catch a ViSP exception: " << e << std::endl;
265  return EXIT_FAILURE;
266  }
267 #else
268  (void)argc;
269  (void)argv;
270  std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
271  return EXIT_SUCCESS;
272 #endif
273 }
Implementation of column vector and the associated operations.
Definition: vpColVector.h:163
error that can be emitted by ViSP classes.
Definition: vpException.h:59
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
void buildFrom(double x, double y, double Z)
void track(const vpHomogeneousMatrix &cMo)
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:146
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:69
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:77
void setWorldCoordinates(double oX, double oY, double oZ)
Definition: vpPoint.cpp:110
void get_eJe(vpMatrix &eJe) vp_override
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) vp_override
@ CAMERA_FRAME
Definition: vpRobot.h:82
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:378
@ EYEINHAND_L_cVe_eJe
Definition: vpServo.h:162
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:329
void set_cVe(const vpVelocityTwistMatrix &cVe_)
Definition: vpServo.h:1028
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:169
void setLambda(double c)
Definition: vpServo.h:976
void set_eJe(const vpMatrix &eJe_)
Definition: vpServo.h:1091
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:132
vpColVector getError() const
Definition: vpServo.h:504
vpColVector computeControlLaw()
Definition: vpServo.cpp:703
@ MEAN
Definition: vpServo.h:208
Class that defines the simplest robot: a free flying camera.