Visual Servoing Platform  version 3.6.1 under development (2024-10-15)
servoSimuFourPoints2DCamVelocity.cpp

Simulation of a 2D visual servoing: Simulation of a 2D visual servoing:

Interaction matrix is computed as the mean of the current and desired interaction matrix.

/****************************************************************************
*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2023 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Simulation of a 2D visual servoing using 4 points as visual feature.
*
*****************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpMath.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/robot/vpSimulatorCamera.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeaturePoint.h>
#include <visp3/vs/vpServo.h>
// List of allowed command line options
#define GETOPTARGS "h"
#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif
void usage(const char *name, const char *badparam);
bool getOptions(int argc, const char **argv);
void usage(const char *name, const char *badparam)
{
fprintf(stdout, "\n\
Simulation of a 2D visual servoing:\n\
- servo on 4 points,\n\
- eye-in-hand control law,\n\
- articular velocity are computed,\n\
- without display.\n\
\n\
SYNOPSIS\n\
%s [-h]\n",
name);
fprintf(stdout, "\n\
OPTIONS: Default\n\
\n\
-h\n\
Print the help.\n");
if (badparam) {
fprintf(stderr, "ERROR: \n");
fprintf(stderr, "\nBad parameter [%s]\n", badparam);
}
}
bool getOptions(int argc, const char **argv)
{
const char *optarg_;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
switch (c) {
case 'h':
usage(argv[0], nullptr);
return false;
default:
usage(argv[0], optarg_);
return false;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], nullptr);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
return false;
}
return true;
}
int main(int argc, const char **argv)
{
#if (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
try {
// Read the command line options
if (getOptions(argc, argv) == false) {
return EXIT_FAILURE;
}
vpServo task;
std::cout << std::endl;
std::cout << "-------------------------------------------------------" << std::endl;
std::cout << " Test program for vpServo " << std::endl;
std::cout << " Eye-in-hand task control, articular velocity are computed" << std::endl;
std::cout << " Simulation " << std::endl;
std::cout << " task : servo 4 points " << std::endl;
std::cout << "-------------------------------------------------------" << std::endl;
std::cout << std::endl;
// sets the initial camera location with respect to the object
cMo[0][3] = 0.1;
cMo[1][3] = 0.2;
cMo[2][3] = 2;
// Compute the position of the object in the world frame
robot.getPosition(wMc);
wMo = wMc * cMo;
// sets the point coordinates in the object frame
vpPoint point[4];
point[0].setWorldCoordinates(-1, -1, 0);
point[1].setWorldCoordinates(1, -1, 0);
point[2].setWorldCoordinates(1, 1, 0);
point[3].setWorldCoordinates(-1, 1, 0);
// computes the point coordinates in the camera frame and its 2D
// coordinates
for (unsigned int i = 0; i < 4; i++)
point[i].track(cMo);
// sets the desired position of the point
for (unsigned int i = 0; i < 4; i++)
vpFeatureBuilder::create(p[i], point[i]); // retrieve x,y and Z of the vpPoint structure
// sets the desired position of the point
pd[0].buildFrom(-0.1, -0.1, 1);
pd[1].buildFrom(0.1, -0.1, 1);
pd[2].buildFrom(0.1, 0.1, 1);
pd[3].buildFrom(-0.1, 0.1, 1);
// define the task
// - we want an eye-in-hand control law
// - articular velocity are computed
// Set the position of the end-effector frame in the camera frame as identity
task.set_cVe(cVe);
// Set the Jacobian (expressed in the end-effector frame)
vpMatrix eJe;
robot.get_eJe(eJe);
task.set_eJe(eJe);
// we want to see a point on a point
for (unsigned int i = 0; i < 4; i++)
task.addFeature(p[i], pd[i]);
// set the gain
task.setLambda(1);
// Display task information
task.print();
unsigned int iter = 0;
// loop
while (iter++ < 1500) {
std::cout << "---------------------------------------------" << iter << std::endl;
// Set the Jacobian (expressed in the end-effector frame)
// since q is modified eJe is modified
robot.get_eJe(eJe);
task.set_eJe(eJe);
// get the robot position
robot.getPosition(wMc);
// Compute the position of the object frame in the camera frame
cMo = wMc.inverse() * wMo;
// update new point position and corresponding features
for (unsigned int i = 0; i < 4; i++) {
point[i].track(cMo);
// retrieve x,y and Z of the vpPoint structure
vpFeatureBuilder::create(p[i], point[i]);
}
// since vpServo::MEAN interaction matrix is used, we need also to
// update the desired features at each iteration
pd[0].buildFrom(-0.1, -0.1, 1);
pd[1].buildFrom(0.1, -0.1, 1);
pd[2].buildFrom(0.1, 0.1, 1);
pd[3].buildFrom(-0.1, 0.1, 1);
// compute the control law ") ;
v = task.computeControlLaw();
// send the camera velocity to the controller ") ;
std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
}
// Display task information
task.print();
return EXIT_SUCCESS;
}
catch (const vpException &e) {
std::cout << "Catch a ViSP exception: " << e << std::endl;
return EXIT_FAILURE;
}
#else
(void)argc;
(void)argv;
std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
return EXIT_SUCCESS;
#endif
}
Implementation of column vector and the associated operations.
Definition: vpColVector.h:191
error that can be emitted by ViSP classes.
Definition: vpException.h:60
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpImagePoint &t)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
vpFeaturePoint & buildFrom(const double &x, const double &y, const double &Z)
void track(const vpHomogeneousMatrix &cMo)
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:169
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:70
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:79
void setWorldCoordinates(double oX, double oY, double oZ)
Definition: vpPoint.cpp:111
void get_eJe(vpMatrix &eJe) VP_OVERRIDE
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) VP_OVERRIDE
@ CAMERA_FRAME
Definition: vpRobot.h:84
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:380
@ EYEINHAND_L_cVe_eJe
Definition: vpServo.h:168
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:331
void set_cVe(const vpVelocityTwistMatrix &cVe_)
Definition: vpServo.h:1038
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:171
void setLambda(double c)
Definition: vpServo.h:986
void set_eJe(const vpMatrix &eJe_)
Definition: vpServo.h:1101
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:134
vpColVector getError() const
Definition: vpServo.h:510
vpColVector computeControlLaw()
Definition: vpServo.cpp:705
@ MEAN
Definition: vpServo.h:214
Class that defines the simplest robot: a free flying camera.