Visual Servoing Platform  version 3.6.1 under development (2025-03-15)
tutorial-megapose-live-single-object-tracking.cpp
1 #include <iostream>
3 
4 #include <visp3/core/vpConfig.h>
5 
6 // Check if std:c++17 or higher
7 #if ((__cplusplus >= 201703L) || (defined(_MSVC_LANG) && (_MSVC_LANG >= 201703L))) && \
8  defined(VISP_HAVE_NLOHMANN_JSON) && defined(VISP_HAVE_OPENCV) && defined(HAVE_OPENCV_VIDEOIO) && \
9  defined(HAVE_OPENCV_DNN) && defined(VISP_HAVE_DISPLAY) && \
10  defined(VISP_HAVE_THREADS)
11 
12 #include <optional>
13 
14 #include <visp3/core/vpIoTools.h>
15 #include <visp3/detection/vpDetectorDNNOpenCV.h>
16 #include <visp3/gui/vpDisplayFactory.h>
17 #include <visp3/dnn_tracker/vpMegaPose.h>
18 #include <visp3/dnn_tracker/vpMegaPoseTracker.h>
19 #include <visp3/io/vpJsonArgumentParser.h>
20 
21 #include VISP_NLOHMANN_JSON(json.hpp)
22 
23 #include <opencv2/videoio.hpp>
24 
25 
26 using json = nlohmann::json;
27 
28 #ifdef ENABLE_VISP_NAMESPACE
29 using namespace VISP_NAMESPACE_NAME;
30 #endif
31 
32 /*
33  * Interpolate two vpColors. Linear interpolation between each components (R, G, B)
34  *
35  * low starting color
36  * high ending color
37  * f interpolation factor, between 0 and 1
38  * Returns the interpolated color
39  */
40 vpColor interpolate(const vpColor &low, const vpColor &high, const float f)
41 {
42  const float r = ((float)high.R - (float)low.R) * f;
43  const float g = ((float)high.G - (float)low.G) * f;
44  const float b = ((float)high.B - (float)low.B) * f;
45  return vpColor((unsigned char)r, (unsigned char)g, (unsigned char)b);
46 }
47 
48 /*
49  * Display the Megapose confidence score as a rectangle in the image.
50  * This rectangle becomes green when Megapose is "confident" about its prediction
51  * The confidence score measures whether Megapose can, from its pose estimation, recover the true pose in future pose refinement iterations
52  *
53  * \param[in] I : The image in which to display the confidence.
54  * \param[in] score : The confidence score of Megapose, between 0 and 1.
55  */
56 void displayScore(const vpImage<vpRGBa> &I, float score)
57 {
58  const unsigned top = static_cast<unsigned>(I.getHeight() * 0.85f);
59  const unsigned height = static_cast<unsigned>(I.getHeight() * 0.1f);
60  const unsigned left = static_cast<unsigned>(I.getWidth() * 0.05f);
61  const unsigned width = static_cast<unsigned>(I.getWidth() * 0.5f);
62  vpRect full(left, top, width, height);
63  vpRect scoreRect(left, top, width * score, height);
64  const vpColor low = vpColor::red;
65  const vpColor high = vpColor::green;
66  const vpColor c = interpolate(low, high, score);
67 
68  vpDisplay::displayRectangle(I, full, c, false, 5);
69  vpDisplay::displayRectangle(I, scoreRect, c, true, 1);
70 }
71 
72 /*
73  * Add the Megapose rendering on top of the actual image I.
74  * Require I and overlay to be of the same size.
75  * Note that a fully black object will not render
76 */
77 void overlayRender(vpImage<vpRGBa> &I, const vpImage<vpRGBa> &overlay)
78 {
79  const vpRGBa black = vpRGBa(0, 0, 0);
80  for (unsigned int i = 0; i < I.getHeight(); ++i) {
81  for (unsigned int j = 0; j < I.getWidth(); ++j) {
82  if (overlay[i][j] != black) {
83  I[i][j] = overlay[i][j];
84  }
85  }
86  }
87 }
88 
90 /*
91  * Run the detection network on an image in order to find a specific object.
92  * The best matching detection is returned:
93  * - If a previous Megapose estimation is available, find the closest match in the image (Euclidean distance between centers)
94  * - Otherwise, take the detection with highest confidence
95  * If no detection corresponding to detectionLabel is found, then std::nullopt is returned
96  */
97 std::optional<vpRect> detectObjectForInitMegaposeDnn(vpDetectorDNNOpenCV &detector, const cv::Mat &I,
98  const std::string &detectionLabel,
99  std::optional<vpMegaPoseEstimate> previousEstimate)
100 {
101  std::vector<vpDetectorDNNOpenCV::DetectedFeatures2D> detections_vec;
102  detector.detect(I, detections_vec);
103  std::vector<vpDetectorDNNOpenCV::DetectedFeatures2D> matchingDetections;
104  for (const auto &detection : detections_vec) {
105  std::optional<std::string> classnameOpt = detection.getClassName();
106  if (classnameOpt) {
107  if (*classnameOpt == detectionLabel) {
108  matchingDetections.push_back(detection);
109  }
110  }
111  }
112  if (matchingDetections.size() == 0) {
113  return std::nullopt;
114  }
115  else if (matchingDetections.size() == 1) {
116  return matchingDetections[0].getBoundingBox();
117  }
118  else {
119  // Get detection that is closest to previous object bounding box estimated by Megapose
120  if (previousEstimate) {
121  vpRect best;
122  double bestDist = 10000.f;
123  const vpImagePoint previousCenter = (*previousEstimate).boundingBox.getCenter();
124  for (const auto &detection : matchingDetections) {
125  const vpRect detectionBB = detection.getBoundingBox();
126  const vpImagePoint center = detectionBB.getCenter();
127  const double matchDist = vpImagePoint::distance(center, previousCenter);
128  if (matchDist < bestDist) {
129  bestDist = matchDist;
130  best = detectionBB;
131  }
132  }
133  return best;
134 
135  }
136  else { // Get detection with highest confidence
137  vpRect best;
138  double highestConf = 0.0;
139  for (const auto &detection : matchingDetections) {
140  const double conf = detection.getConfidenceScore();
141  if (conf > highestConf) {
142  highestConf = conf;
143  best = detection.getBoundingBox();
144  }
145  }
146  return best;
147  }
148  }
149  return std::nullopt;
150 }
151 
152 /*
153  * Ask user to provide the detection themselves. They must click to start labelling, then click on the top left and bottom right corner to create the detection.
154  */
155 std::optional<vpRect> detectObjectForInitMegaposeClick(const vpImage<vpRGBa> &I)
156 {
157  const bool startLabelling = vpDisplay::getClick(I, false);
158 
159  const vpImagePoint textPosition(10.0, 20.0);
160 
161  if (startLabelling) {
162  vpImagePoint topLeft, bottomRight;
163  vpDisplay::displayText(I, textPosition, "Click the upper left corner of the bounding box", vpColor::red);
164  vpDisplay::flush(I);
165  vpDisplay::getClick(I, topLeft, true);
167  vpDisplay::displayCross(I, topLeft, 5, vpColor::red, 2);
168  vpDisplay::displayText(I, textPosition, "Click the bottom right corner of the bounding box", vpColor::red);
169  vpDisplay::flush(I);
170  vpDisplay::getClick(I, bottomRight, true);
171  vpRect bb(topLeft, bottomRight);
172  return bb;
173  }
174  else {
176  vpDisplay::displayText(I, textPosition, "Click when the object is visible and static to start reinitializing megapose.", vpColor::red);
177  vpDisplay::flush(I);
178  return std::nullopt;
179  }
180 }
182 
183 enum DetectionMethod
184 {
185  UNKNOWN,
186  CLICK,
187  DNN
188 };
189 
190 NLOHMANN_JSON_SERIALIZE_ENUM(DetectionMethod, {
191  {UNKNOWN, nullptr}, // Default value if the json string is not in "current", "desired" or "mean"
192  {CLICK, "click"},
193  {DNN, "dnn"} }
194  );
195 
196 
197 int main(int argc, const char *argv[])
198 {
199  unsigned width = 640, height = 480;
200  vpCameraParameters cam;
201  std::string videoDevice = "0";
202  std::string megaposeAddress = "127.0.0.1";
203  unsigned megaposePort = 5555;
204  int refinerIterations = 1, coarseNumSamples = 576;
205  double reinitThreshold = 0.2;
206 
207  DetectionMethod detectionMethod = DetectionMethod::UNKNOWN;
208 
209  std::string detectorModelPath = "path/to/model.onnx", detectorConfig = "none";
210  std::string detectorFramework = "onnx", detectorTypeString = "yolov7";
211  std::string objectName = "cube";
212  std::vector<std::string> labels = { "cube" };
213  float detectorMeanR = 0.f, detectorMeanG = 0.f, detectorMeanB = 0.f;
214  float detectorConfidenceThreshold = 0.65f, detectorNmsThreshold = 0.5f, detectorFilterThreshold = -0.25f;
215  float detectorScaleFactor = 0.0039f;
216  bool detectorSwapRB = false;
218  vpJsonArgumentParser parser("Single object tracking with Megapose", "--config", "/");
219  parser.addArgument("width", width, true, "The image width")
220  .addArgument("height", height, true, "The image height")
221  .addArgument("camera", cam, true, "The camera intrinsic parameters. Should correspond to a perspective projection model without distortion.")
222  .addArgument("video-device", videoDevice, true, "Video device")
223  .addArgument("object", objectName, true, "Name of the object to track with megapose.")
224  .addArgument("detectionMethod", detectionMethod, true, "How to perform detection of the object to get the bounding box:"
225  " \"click\" for user labelling, \"dnn\" for dnn detection.")
226  .addArgument("reinitThreshold", reinitThreshold, false, "If the Megapose score falls below this threshold, then a reinitialization is be required."
227  " Should be between 0 and 1")
228  .addArgument("megapose/address", megaposeAddress, true, "IP address of the Megapose server.")
229  .addArgument("megapose/port", megaposePort, true, "Port on which the Megapose server listens for connections.")
230  .addArgument("megapose/refinerIterations", refinerIterations, false, "Number of Megapose refiner model iterations."
231  "A higher count may lead to better accuracy, at the cost of more processing time")
232  .addArgument("megapose/initialisationNumSamples", coarseNumSamples, false, "Number of Megapose renderings used for the initial pose estimation.")
233 
234  .addArgument("detector/model-path", detectorModelPath, true, "Path to the model")
235  .addArgument("detector/config", detectorConfig, true, "Path to the model configuration. Set to none if config is not required.")
236  .addArgument("detector/framework", detectorFramework, true, "Detector framework")
237  .addArgument("detector/type", detectorTypeString, true, "Detector type")
238  .addArgument("detector/labels", labels, true, "Detection class labels")
239  .addArgument("detector/mean/red", detectorMeanR, false, "Detector mean red component. Used to normalize image")
240  .addArgument("detector/mean/green", detectorMeanG, false, "Detector mean green component. Used to normalize image")
241  .addArgument("detector/mean/blue", detectorMeanB, false, "Detector mean red component. Used to normalize image")
242  .addArgument("detector/confidenceThreshold", detectorConfidenceThreshold, false, "Detector confidence threshold. "
243  "When a detection with a confidence below this threshold, it is ignored")
244  .addArgument("detector/nmsThreshold", detectorNmsThreshold, false, "Detector non maximal suppression threshold.")
245  .addArgument("detector/filterThreshold", detectorFilterThreshold, false)
246  .addArgument("detector/scaleFactor", detectorScaleFactor, false, "Pixel intensity rescaling factor. If set to 1/255, then pixel values are between 0 and 1.")
247  .addArgument("detector/swapRedAndBlue", detectorSwapRB, false, "Whether to swap red and blue channels before feeding the image to the detector.");
248 
249  parser.parse(argc, argv);
251 
253  throw vpException(vpException::badValue, "The camera projection model should be without distortion, as other models are ignored by Megapose");
254  }
255 
256  if (detectionMethod == DetectionMethod::UNKNOWN) {
257  throw vpException(vpException::badValue, "The specified detection method is incorrect: it should be either \"click\" or \"dnn\"");
258  }
259 
260  cv::VideoCapture capture;
261  bool isLiveCapture;
262  bool hasCaptureOpeningSucceeded;
263  double videoFrametime = 0; // Only for prerecorded videos
264  if (vpMath::isNumber(videoDevice)) {
265  hasCaptureOpeningSucceeded = capture.open(std::atoi(videoDevice.c_str()));
266  isLiveCapture = true;
267  }
268  else {
269  hasCaptureOpeningSucceeded = capture.open(videoDevice);
270  isLiveCapture = false;
271  double fps = capture.get(cv::CAP_PROP_FPS);
272  videoFrametime = (1.0 / fps) * 1000.0;
273  }
274  if (!hasCaptureOpeningSucceeded) {
275  std::cout << "Capture from camera: " << videoDevice << " didn't work" << std::endl;
276  return EXIT_FAILURE;
277  }
278 
279  vpImage<vpRGBa> I;
280  std::shared_ptr<vpDisplay> display = vpDisplayFactory::createDisplay();
281 
282  //d.setDownScalingFactor(vpDisplay::SCALE_AUTO);
283 #if (VISP_HAVE_OPENCV_VERSION >= 0x030403) && defined(HAVE_OPENCV_DNN) && \
284  ((__cplusplus >= 201703L) || (defined(_MSVC_LANG) && (_MSVC_LANG >= 201703L)))
287  vpDetectorDNNOpenCV::NetConfig netConfig(detectorConfidenceThreshold, detectorNmsThreshold, labels,
288  cv::Size(width, height), detectorFilterThreshold);
289  vpDetectorDNNOpenCV dnn(netConfig, detectorType);
290  if (detectionMethod == DetectionMethod::DNN) {
291  dnn.readNet(detectorModelPath, detectorConfig, detectorFramework);
292  dnn.setMean(detectorMeanR, detectorMeanG, detectorMeanB);
293  dnn.setScaleFactor(detectorScaleFactor);
294  dnn.setSwapRB(detectorSwapRB);
295  }
296 #endif
298  std::shared_ptr<vpMegaPose> megapose;
299  try {
300  megapose = std::make_shared<vpMegaPose>(megaposeAddress, megaposePort, cam, height, width);
301  }
302  catch (...) {
303  throw vpException(vpException::ioError, "Could not connect to Megapose server at " + megaposeAddress + " on port " + std::to_string(megaposePort));
304  }
305 
306  vpMegaPoseTracker megaposeTracker(megapose, objectName, refinerIterations);
307  megapose->setCoarseNumSamples(coarseNumSamples);
308  const std::vector<std::string> allObjects = megapose->getObjectNames();
309  if (std::find(allObjects.begin(), allObjects.end(), objectName) == allObjects.end()) {
310  throw vpException(vpException::badValue, "Object " + objectName + " is not known by the Megapose server!");
311  }
312  std::future<vpMegaPoseEstimate> trackerFuture;
314 
315  cv::Mat frame;
316  vpMegaPoseEstimate megaposeEstimate; // last Megapose estimation
317  vpRect lastDetection; // Last detection (initialization)
318  bool callMegapose = true; // Whether we should call Megapose this iteration
319  bool initialized = false; // Whether tracking should be initialized or reinitialized
320  bool tracking = false;
321 
322  bool overlayModel = true;
323  vpImage<vpRGBa> overlayImage(height, width);
324  std::string overlayMode = "full";
325 
326  std::vector<double> megaposeTimes;
327  std::vector<double> frameTimes;
328 
329  double megaposeStartTime = 0.0;
330 
332  while (true) {
333  const double frameStart = vpTime::measureTimeMs();
334  capture >> frame;
335  if (frame.empty())
336  break;
337 
338  if (I.getSize() == 0) {
339  vpImageConvert::convert(frame, I);
340  display->init(I);
341  vpDisplay::setTitle(I, "Megapose object pose estimation");
342  }
343  else {
344  vpImageConvert::convert(frame, I);
345  }
348  // Check whether Megapose is still running
350  if (!callMegapose && trackerFuture.wait_for(std::chrono::milliseconds(0)) == std::future_status::ready) {
351  megaposeEstimate = trackerFuture.get();
352  if (tracking) {
353  megaposeTimes.push_back(vpTime::measureTimeMs() - megaposeStartTime);
354  }
355  callMegapose = true;
356  tracking = true;
357 
358  if (overlayModel) {
359  overlayImage = megapose->viewObjects({ objectName }, { megaposeEstimate.cTo }, overlayMode);
360  }
361 
362  if (megaposeEstimate.score < reinitThreshold) { // If confidence is low, require a reinitialisation with 2D detection
363  initialized = false;
364  }
365  }
368  if (callMegapose) {
369  if (!initialized) {
370  tracking = false;
371  std::optional<vpRect> detection = std::nullopt;
372 #if (VISP_HAVE_OPENCV_VERSION >= 0x030403) && defined(HAVE_OPENCV_DNN) && \
373  ((__cplusplus >= 201703L) || (defined(_MSVC_LANG) && (_MSVC_LANG >= 201703L)))
374  if (detectionMethod == DetectionMethod::DNN) {
375  detection = detectObjectForInitMegaposeDnn(
376  dnn, frame, objectName, initialized ? std::optional(megaposeEstimate) : std::nullopt);
377  }
378 #endif
379  if (detectionMethod == DetectionMethod::CLICK) {
380  detection = detectObjectForInitMegaposeClick(I);
381  }
382 
383  if (detection) {
384  initialized = true;
385  lastDetection = *detection;
386  trackerFuture = megaposeTracker.init(I, lastDetection);
387  callMegapose = false;
388 
389  }
390  }
391  else {
392  trackerFuture = megaposeTracker.track(I);
393  callMegapose = false;
394  megaposeStartTime = vpTime::measureTimeMs();
395  }
396  }
398 
400  std::string keyboardEvent;
401  const bool keyPressed = vpDisplay::getKeyboardEvent(I, keyboardEvent, false);
402  if (keyPressed) {
403  if (keyboardEvent == "t") {
404  overlayModel = !overlayModel;
405  }
406  else if (keyboardEvent == "w") {
407  overlayMode = overlayMode == "full" ? "wireframe" : "full";
408  }
409  }
410 
411  if (tracking) {
412  if (overlayModel) {
413  overlayRender(I, overlayImage);
415  }
416  vpDisplay::displayText(I, 20, 20, "Right click to quit", vpColor::red);
417  vpDisplay::displayText(I, 30, 20, "Press T: Toggle overlay", vpColor::red);
418  vpDisplay::displayText(I, 40, 20, "Press W: Toggle wireframe", vpColor::red);
419  vpDisplay::displayFrame(I, megaposeEstimate.cTo, cam, 0.05, vpColor::none, 3);
420  //vpDisplay::displayRectangle(I, lastDetection, vpColor::red);
421  displayScore(I, megaposeEstimate.score);
422  }
424 
425  vpDisplay::flush(I);
426 
428  if (vpDisplay::getClick(I, button, false)) {
429  if (button == vpMouseButton::button3) {
430  break; // Right click to stop
431  }
432  }
433  const double frameEnd = vpTime::measureTimeMs();
434  if (!isLiveCapture) {
435  vpTime::wait(std::max<double>(0.0, videoFrametime - (frameEnd - frameStart)));
436  }
437  frameTimes.push_back(vpTime::measureTimeMs() - frameStart);
438  }
439  std::cout << "Average frame time: " << vpMath::getMean(frameTimes) << std::endl;
440  std::cout << "Average time between Megapose calls: " << vpMath::getMean(megaposeTimes) << std::endl;
441 }
442 
443 #else
444 int main()
445 {
446  std::cout << "Compile ViSP with the DNN tracker module, the JSON 3rd party library and the OpenCV detection module" << std::endl;
447  return EXIT_SUCCESS;
448 }
449 
450 #endif
Generic class defining intrinsic camera parameters.
@ perspectiveProjWithoutDistortion
Perspective projection without distortion model.
vpCameraParametersProjType get_projModel() const
Class to define RGB colors available for display functionalities.
Definition: vpColor.h:157
static const vpColor red
Definition: vpColor.h:198
static const vpColor none
Definition: vpColor.h:210
static const vpColor green
Definition: vpColor.h:201
Structure containing some information required for the configuration of a vpDetectorDNNOpenCV object.
DNNResultsParsingType
Enumeration listing the types of DNN for which the vpDetectorDNNOpenCV furnishes the methods permitti...
static DNNResultsParsingType dnnResultsParsingTypeFromString(const std::string &name)
virtual bool detect(const vpImage< unsigned char > &I, std::vector< DetectedFeatures2D > &output)
Object detection using OpenCV DNN module.
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
static bool getKeyboardEvent(const vpImage< unsigned char > &I, bool blocking=true)
static void display(const vpImage< unsigned char > &I)
static void displayFrame(const vpImage< unsigned char > &I, const vpHomogeneousMatrix &cMo, const vpCameraParameters &cam, double size, const vpColor &color=vpColor::none, unsigned int thickness=1, const vpImagePoint &offset=vpImagePoint(0, 0), const std::string &frameName="", const vpColor &textColor=vpColor::black, const vpImagePoint &textOffset=vpImagePoint(15, 15))
static void displayCross(const vpImage< unsigned char > &I, const vpImagePoint &ip, unsigned int size, const vpColor &color, unsigned int thickness=1)
static void setTitle(const vpImage< unsigned char > &I, const std::string &windowtitle)
static void flush(const vpImage< unsigned char > &I)
static void displayRectangle(const vpImage< unsigned char > &I, const vpImagePoint &topLeft, unsigned int width, unsigned int height, const vpColor &color, bool fill=false, unsigned int thickness=1)
static void displayText(const vpImage< unsigned char > &I, const vpImagePoint &ip, const std::string &s, const vpColor &color)
error that can be emitted by ViSP classes.
Definition: vpException.h:60
@ ioError
I/O error.
Definition: vpException.h:67
@ badValue
Used to indicate that a value is not in the allowed range.
Definition: vpException.h:73
static void convert(const vpImage< unsigned char > &src, vpImage< vpRGBa > &dest)
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:82
static double distance(const vpImagePoint &iP1, const vpImagePoint &iP2)
unsigned int getWidth() const
Definition: vpImage.h:242
unsigned int getSize() const
Definition: vpImage.h:221
unsigned int getHeight() const
Definition: vpImage.h:181
Command line argument parsing with support for JSON files. If a JSON file is supplied,...
static double getMean(const std::vector< double > &v)
Definition: vpMath.cpp:302
static bool isNumber(const std::string &str)
Definition: vpMath.cpp:214
vpHomogeneousMatrix cTo
Definition: vpMegaPose.h:70
A simplified interface to track a single object with MegaPose. This tracker works asynchronously: A c...
Definition: vpRGBa.h:70
unsigned char B
Blue component.
Definition: vpRGBa.h:187
unsigned char R
Red component.
Definition: vpRGBa.h:185
unsigned char G
Green component.
Definition: vpRGBa.h:186
Defines a rectangle in the plane.
Definition: vpRect.h:79
void getCenter(double &x, double &y) const
Definition: vpRect.h:136
std::shared_ptr< vpDisplay > createDisplay()
Return a smart pointer vpDisplay specialization if a GUI library is available or nullptr otherwise.
VISP_EXPORT int wait(double t0, double t)
VISP_EXPORT double measureTimeMs()