Visual Servoing Platform  version 3.6.1 under development (2024-11-15)
tutorial-megapose-live-single-object-tracking.cpp
1 #include <iostream>
3 
4 #include <visp3/core/vpConfig.h>
5 
6 // Check if std:c++17 or higher
7 #if ((__cplusplus >= 201703L) || (defined(_MSVC_LANG) && (_MSVC_LANG >= 201703L))) && \
8  defined(VISP_HAVE_NLOHMANN_JSON) && defined(VISP_HAVE_OPENCV) && defined(HAVE_OPENCV_VIDEOIO) && \
9  defined(HAVE_OPENCV_DNN) && (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI) || defined(HAVE_OPENCV_HIGHGUI)) && \
10  defined(VISP_HAVE_THREADS)
11 
12 #include <optional>
13 
14 #include <visp3/core/vpIoTools.h>
15 #include <visp3/detection/vpDetectorDNNOpenCV.h>
16 #include <visp3/gui/vpDisplayGDI.h>
17 #include <visp3/gui/vpDisplayOpenCV.h>
18 #include <visp3/gui/vpDisplayX.h>
19 #include <visp3/dnn_tracker/vpMegaPose.h>
20 #include <visp3/dnn_tracker/vpMegaPoseTracker.h>
21 #include <visp3/io/vpJsonArgumentParser.h>
22 
23 #include VISP_NLOHMANN_JSON(json.hpp)
24 
25 #include <opencv2/videoio.hpp>
26 
27 
28 using json = nlohmann::json;
29 
30 #ifdef ENABLE_VISP_NAMESPACE
31 using namespace VISP_NAMESPACE_NAME;
32 #endif
33 
34 /*
35  * Interpolate two vpColors. Linear interpolation between each components (R, G, B)
36  *
37  * low starting color
38  * high ending color
39  * f interpolation factor, between 0 and 1
40  * Returns the interpolated color
41  */
42 vpColor interpolate(const vpColor &low, const vpColor &high, const float f)
43 {
44  const float r = ((float)high.R - (float)low.R) * f;
45  const float g = ((float)high.G - (float)low.G) * f;
46  const float b = ((float)high.B - (float)low.B) * f;
47  return vpColor((unsigned char)r, (unsigned char)g, (unsigned char)b);
48 }
49 
50 /*
51  * Display the Megapose confidence score as a rectangle in the image.
52  * This rectangle becomes green when Megapose is "confident" about its prediction
53  * The confidence score measures whether Megapose can, from its pose estimation, recover the true pose in future pose refinement iterations
54  *
55  * \param[in] I : The image in which to display the confidence.
56  * \param[in] score : The confidence score of Megapose, between 0 and 1.
57  */
58 void displayScore(const vpImage<vpRGBa> &I, float score)
59 {
60  const unsigned top = static_cast<unsigned>(I.getHeight() * 0.85f);
61  const unsigned height = static_cast<unsigned>(I.getHeight() * 0.1f);
62  const unsigned left = static_cast<unsigned>(I.getWidth() * 0.05f);
63  const unsigned width = static_cast<unsigned>(I.getWidth() * 0.5f);
64  vpRect full(left, top, width, height);
65  vpRect scoreRect(left, top, width * score, height);
66  const vpColor low = vpColor::red;
67  const vpColor high = vpColor::green;
68  const vpColor c = interpolate(low, high, score);
69 
70  vpDisplay::displayRectangle(I, full, c, false, 5);
71  vpDisplay::displayRectangle(I, scoreRect, c, true, 1);
72 }
73 
74 /*
75  * Add the Megapose rendering on top of the actual image I.
76  * Require I and overlay to be of the same size.
77  * Note that a fully black object will not render
78 */
79 void overlayRender(vpImage<vpRGBa> &I, const vpImage<vpRGBa> &overlay)
80 {
81  const vpRGBa black = vpRGBa(0, 0, 0);
82  for (unsigned int i = 0; i < I.getHeight(); ++i) {
83  for (unsigned int j = 0; j < I.getWidth(); ++j) {
84  if (overlay[i][j] != black) {
85  I[i][j] = overlay[i][j];
86  }
87  }
88  }
89 }
90 
92 /*
93  * Run the detection network on an image in order to find a specific object.
94  * The best matching detection is returned:
95  * - If a previous Megapose estimation is available, find the closest match in the image (Euclidean distance between centers)
96  * - Otherwise, take the detection with highest confidence
97  * If no detection corresponding to detectionLabel is found, then std::nullopt is returned
98  */
99 std::optional<vpRect> detectObjectForInitMegaposeDnn(vpDetectorDNNOpenCV &detector, const cv::Mat &I,
100  const std::string &detectionLabel,
101  std::optional<vpMegaPoseEstimate> previousEstimate)
102 {
103  std::vector<vpDetectorDNNOpenCV::DetectedFeatures2D> detections_vec;
104  detector.detect(I, detections_vec);
105  std::vector<vpDetectorDNNOpenCV::DetectedFeatures2D> matchingDetections;
106  for (const auto &detection : detections_vec) {
107  std::optional<std::string> classnameOpt = detection.getClassName();
108  if (classnameOpt) {
109  if (*classnameOpt == detectionLabel) {
110  matchingDetections.push_back(detection);
111  }
112  }
113  }
114  if (matchingDetections.size() == 0) {
115  return std::nullopt;
116  }
117  else if (matchingDetections.size() == 1) {
118  return matchingDetections[0].getBoundingBox();
119  }
120  else {
121  // Get detection that is closest to previous object bounding box estimated by Megapose
122  if (previousEstimate) {
123  vpRect best;
124  double bestDist = 10000.f;
125  const vpImagePoint previousCenter = (*previousEstimate).boundingBox.getCenter();
126  for (const auto &detection : matchingDetections) {
127  const vpRect detectionBB = detection.getBoundingBox();
128  const vpImagePoint center = detectionBB.getCenter();
129  const double matchDist = vpImagePoint::distance(center, previousCenter);
130  if (matchDist < bestDist) {
131  bestDist = matchDist;
132  best = detectionBB;
133  }
134  }
135  return best;
136 
137  }
138  else { // Get detection with highest confidence
139  vpRect best;
140  double highestConf = 0.0;
141  for (const auto &detection : matchingDetections) {
142  const double conf = detection.getConfidenceScore();
143  if (conf > highestConf) {
144  highestConf = conf;
145  best = detection.getBoundingBox();
146  }
147  }
148  return best;
149  }
150  }
151  return std::nullopt;
152 }
153 
154 /*
155  * Ask user to provide the detection themselves. They must click to start labelling, then click on the top left and bottom right corner to create the detection.
156  */
157 std::optional<vpRect> detectObjectForInitMegaposeClick(const vpImage<vpRGBa> &I)
158 {
159  const bool startLabelling = vpDisplay::getClick(I, false);
160 
161  const vpImagePoint textPosition(10.0, 20.0);
162 
163  if (startLabelling) {
164  vpImagePoint topLeft, bottomRight;
165  vpDisplay::displayText(I, textPosition, "Click the upper left corner of the bounding box", vpColor::red);
166  vpDisplay::flush(I);
167  vpDisplay::getClick(I, topLeft, true);
169  vpDisplay::displayCross(I, topLeft, 5, vpColor::red, 2);
170  vpDisplay::displayText(I, textPosition, "Click the bottom right corner of the bounding box", vpColor::red);
171  vpDisplay::flush(I);
172  vpDisplay::getClick(I, bottomRight, true);
173  vpRect bb(topLeft, bottomRight);
174  return bb;
175  }
176  else {
178  vpDisplay::displayText(I, textPosition, "Click when the object is visible and static to start reinitializing megapose.", vpColor::red);
179  vpDisplay::flush(I);
180  return std::nullopt;
181  }
182 }
184 
185 enum DetectionMethod
186 {
187  UNKNOWN,
188  CLICK,
189  DNN
190 };
191 
192 NLOHMANN_JSON_SERIALIZE_ENUM(DetectionMethod, {
193  {UNKNOWN, nullptr}, // Default value if the json string is not in "current", "desired" or "mean"
194  {CLICK, "click"},
195  {DNN, "dnn"} }
196  );
197 
198 
199 int main(int argc, const char *argv[])
200 {
201  unsigned width = 640, height = 480;
202  vpCameraParameters cam;
203  std::string videoDevice = "0";
204  std::string megaposeAddress = "127.0.0.1";
205  unsigned megaposePort = 5555;
206  int refinerIterations = 1, coarseNumSamples = 576;
207  double reinitThreshold = 0.2;
208 
209  DetectionMethod detectionMethod = DetectionMethod::UNKNOWN;
210 
211  std::string detectorModelPath = "path/to/model.onnx", detectorConfig = "none";
212  std::string detectorFramework = "onnx", detectorTypeString = "yolov7";
213  std::string objectName = "cube";
214  std::vector<std::string> labels = { "cube" };
215  float detectorMeanR = 0.f, detectorMeanG = 0.f, detectorMeanB = 0.f;
216  float detectorConfidenceThreshold = 0.65f, detectorNmsThreshold = 0.5f, detectorFilterThreshold = -0.25f;
217  float detectorScaleFactor = 0.0039f;
218  bool detectorSwapRB = false;
220  vpJsonArgumentParser parser("Single object tracking with Megapose", "--config", "/");
221  parser.addArgument("width", width, true, "The image width")
222  .addArgument("height", height, true, "The image height")
223  .addArgument("camera", cam, true, "The camera intrinsic parameters. Should correspond to a perspective projection model without distortion.")
224  .addArgument("video-device", videoDevice, true, "Video device")
225  .addArgument("object", objectName, true, "Name of the object to track with megapose.")
226  .addArgument("detectionMethod", detectionMethod, true, "How to perform detection of the object to get the bounding box:"
227  " \"click\" for user labelling, \"dnn\" for dnn detection.")
228  .addArgument("reinitThreshold", reinitThreshold, false, "If the Megapose score falls below this threshold, then a reinitialization is be required."
229  " Should be between 0 and 1")
230  .addArgument("megapose/address", megaposeAddress, true, "IP address of the Megapose server.")
231  .addArgument("megapose/port", megaposePort, true, "Port on which the Megapose server listens for connections.")
232  .addArgument("megapose/refinerIterations", refinerIterations, false, "Number of Megapose refiner model iterations."
233  "A higher count may lead to better accuracy, at the cost of more processing time")
234  .addArgument("megapose/initialisationNumSamples", coarseNumSamples, false, "Number of Megapose renderings used for the initial pose estimation.")
235 
236  .addArgument("detector/model-path", detectorModelPath, true, "Path to the model")
237  .addArgument("detector/config", detectorConfig, true, "Path to the model configuration. Set to none if config is not required.")
238  .addArgument("detector/framework", detectorFramework, true, "Detector framework")
239  .addArgument("detector/type", detectorTypeString, true, "Detector type")
240  .addArgument("detector/labels", labels, true, "Detection class labels")
241  .addArgument("detector/mean/red", detectorMeanR, false, "Detector mean red component. Used to normalize image")
242  .addArgument("detector/mean/green", detectorMeanG, false, "Detector mean green component. Used to normalize image")
243  .addArgument("detector/mean/blue", detectorMeanB, false, "Detector mean red component. Used to normalize image")
244  .addArgument("detector/confidenceThreshold", detectorConfidenceThreshold, false, "Detector confidence threshold. "
245  "When a detection with a confidence below this threshold, it is ignored")
246  .addArgument("detector/nmsThreshold", detectorNmsThreshold, false, "Detector non maximal suppression threshold.")
247  .addArgument("detector/filterThreshold", detectorFilterThreshold, false)
248  .addArgument("detector/scaleFactor", detectorScaleFactor, false, "Pixel intensity rescaling factor. If set to 1/255, then pixel values are between 0 and 1.")
249  .addArgument("detector/swapRedAndBlue", detectorSwapRB, false, "Whether to swap red and blue channels before feeding the image to the detector.");
250 
251  parser.parse(argc, argv);
253 
255  throw vpException(vpException::badValue, "The camera projection model should be without distortion, as other models are ignored by Megapose");
256  }
257 
258  if (detectionMethod == DetectionMethod::UNKNOWN) {
259  throw vpException(vpException::badValue, "The specified detection method is incorrect: it should be either \"click\" or \"dnn\"");
260  }
261 
262  cv::VideoCapture capture;
263  bool isLiveCapture;
264  bool hasCaptureOpeningSucceeded;
265  double videoFrametime = 0; // Only for prerecorded videos
266  if (vpMath::isNumber(videoDevice)) {
267  hasCaptureOpeningSucceeded = capture.open(std::atoi(videoDevice.c_str()));
268  isLiveCapture = true;
269  }
270  else {
271  hasCaptureOpeningSucceeded = capture.open(videoDevice);
272  isLiveCapture = false;
273  double fps = capture.get(cv::CAP_PROP_FPS);
274  videoFrametime = (1.0 / fps) * 1000.0;
275  }
276  if (!hasCaptureOpeningSucceeded) {
277  std::cout << "Capture from camera: " << videoDevice << " didn't work" << std::endl;
278  return EXIT_FAILURE;
279  }
280 
281  vpImage<vpRGBa> I;
282 #if defined(VISP_HAVE_X11)
283  vpDisplayX d;
284 #elif defined(VISP_HAVE_GDI)
285  vpDisplayGDI d;
286 #elif defined(HAVE_OPENCV_HIGHGUI)
287  vpDisplayOpenCV d;
288 #endif
289  //d.setDownScalingFactor(vpDisplay::SCALE_AUTO);
290 #if (VISP_HAVE_OPENCV_VERSION >= 0x030403) && defined(HAVE_OPENCV_DNN) && \
291  ((__cplusplus >= 201703L) || (defined(_MSVC_LANG) && (_MSVC_LANG >= 201703L)))
292  vpDetectorDNNOpenCV::DNNResultsParsingType detectorType =
293  vpDetectorDNNOpenCV::dnnResultsParsingTypeFromString(detectorTypeString);
294  vpDetectorDNNOpenCV::NetConfig netConfig(detectorConfidenceThreshold, detectorNmsThreshold, labels,
295  cv::Size(width, height), detectorFilterThreshold);
296  vpDetectorDNNOpenCV dnn(netConfig, detectorType);
297  if (detectionMethod == DetectionMethod::DNN) {
298  dnn.readNet(detectorModelPath, detectorConfig, detectorFramework);
299  dnn.setMean(detectorMeanR, detectorMeanG, detectorMeanB);
300  dnn.setScaleFactor(detectorScaleFactor);
301  dnn.setSwapRB(detectorSwapRB);
302  }
303 #endif
305  std::shared_ptr<vpMegaPose> megapose;
306  try {
307  megapose = std::make_shared<vpMegaPose>(megaposeAddress, megaposePort, cam, height, width);
308  }
309  catch (...) {
310  throw vpException(vpException::ioError, "Could not connect to Megapose server at " + megaposeAddress + " on port " + std::to_string(megaposePort));
311  }
312 
313  vpMegaPoseTracker megaposeTracker(megapose, objectName, refinerIterations);
314  megapose->setCoarseNumSamples(coarseNumSamples);
315  const std::vector<std::string> allObjects = megapose->getObjectNames();
316  if (std::find(allObjects.begin(), allObjects.end(), objectName) == allObjects.end()) {
317  throw vpException(vpException::badValue, "Object " + objectName + " is not known by the Megapose server!");
318  }
319  std::future<vpMegaPoseEstimate> trackerFuture;
321 
322  cv::Mat frame;
323  vpMegaPoseEstimate megaposeEstimate; // last Megapose estimation
324  vpRect lastDetection; // Last detection (initialization)
325  bool callMegapose = true; // Whether we should call Megapose this iteration
326  bool initialized = false; // Whether tracking should be initialized or reinitialized
327  bool tracking = false;
328 
329  bool overlayModel = true;
330  vpImage<vpRGBa> overlayImage(height, width);
331  std::string overlayMode = "full";
332 
333  std::vector<double> megaposeTimes;
334  std::vector<double> frameTimes;
335 
336  double megaposeStartTime = 0.0;
337 
339  while (true) {
340  const double frameStart = vpTime::measureTimeMs();
341  capture >> frame;
342  if (frame.empty())
343  break;
344 
345  if (I.getSize() == 0) {
346  vpImageConvert::convert(frame, I);
347  d.init(I);
348  vpDisplay::setTitle(I, "Megapose object pose estimation");
349  }
350  else {
351  vpImageConvert::convert(frame, I);
352  }
355  // Check whether Megapose is still running
357  if (!callMegapose && trackerFuture.wait_for(std::chrono::milliseconds(0)) == std::future_status::ready) {
358  megaposeEstimate = trackerFuture.get();
359  if (tracking) {
360  megaposeTimes.push_back(vpTime::measureTimeMs() - megaposeStartTime);
361  }
362  callMegapose = true;
363  tracking = true;
364 
365  if (overlayModel) {
366  overlayImage = megapose->viewObjects({ objectName }, { megaposeEstimate.cTo }, overlayMode);
367  }
368 
369  if (megaposeEstimate.score < reinitThreshold) { // If confidence is low, require a reinitialisation with 2D detection
370  initialized = false;
371  }
372  }
375  if (callMegapose) {
376  if (!initialized) {
377  tracking = false;
378  std::optional<vpRect> detection = std::nullopt;
379 #if (VISP_HAVE_OPENCV_VERSION >= 0x030403) && defined(HAVE_OPENCV_DNN) && \
380  ((__cplusplus >= 201703L) || (defined(_MSVC_LANG) && (_MSVC_LANG >= 201703L)))
381  if (detectionMethod == DetectionMethod::DNN) {
382  detection = detectObjectForInitMegaposeDnn(
383  dnn, frame, objectName, initialized ? std::optional(megaposeEstimate) : std::nullopt);
384  }
385 #endif
386  if (detectionMethod == DetectionMethod::CLICK) {
387  detection = detectObjectForInitMegaposeClick(I);
388  }
389 
390  if (detection) {
391  initialized = true;
392  lastDetection = *detection;
393  trackerFuture = megaposeTracker.init(I, lastDetection);
394  callMegapose = false;
395 
396  }
397  }
398  else {
399  trackerFuture = megaposeTracker.track(I);
400  callMegapose = false;
401  megaposeStartTime = vpTime::measureTimeMs();
402  }
403  }
405 
407  std::string keyboardEvent;
408  const bool keyPressed = vpDisplay::getKeyboardEvent(I, keyboardEvent, false);
409  if (keyPressed) {
410  if (keyboardEvent == "t") {
411  overlayModel = !overlayModel;
412  }
413  else if (keyboardEvent == "w") {
414  overlayMode = overlayMode == "full" ? "wireframe" : "full";
415  }
416  }
417 
418  if (tracking) {
419  if (overlayModel) {
420  overlayRender(I, overlayImage);
422  }
423  vpDisplay::displayText(I, 20, 20, "Right click to quit", vpColor::red);
424  vpDisplay::displayText(I, 30, 20, "Press T: Toggle overlay", vpColor::red);
425  vpDisplay::displayText(I, 40, 20, "Press W: Toggle wireframe", vpColor::red);
426  vpDisplay::displayFrame(I, megaposeEstimate.cTo, cam, 0.05, vpColor::none, 3);
427  //vpDisplay::displayRectangle(I, lastDetection, vpColor::red);
428  displayScore(I, megaposeEstimate.score);
429  }
431 
432  vpDisplay::flush(I);
433 
435  if (vpDisplay::getClick(I, button, false)) {
436  if (button == vpMouseButton::button3) {
437  break; // Right click to stop
438  }
439  }
440  const double frameEnd = vpTime::measureTimeMs();
441  if (!isLiveCapture) {
442  vpTime::wait(std::max<double>(0.0, videoFrametime - (frameEnd - frameStart)));
443  }
444  frameTimes.push_back(vpTime::measureTimeMs() - frameStart);
445  }
446  std::cout << "Average frame time: " << vpMath::getMean(frameTimes) << std::endl;
447  std::cout << "Average time between Megapose calls: " << vpMath::getMean(megaposeTimes) << std::endl;
448 }
449 
450 #else
451 int main()
452 {
453  std::cout << "Compile ViSP with the DNN tracker module, the JSON 3rd party library and the OpenCV detection module" << std::endl;
454  return EXIT_SUCCESS;
455 }
456 
457 #endif
Generic class defining intrinsic camera parameters.
@ perspectiveProjWithoutDistortion
Perspective projection without distortion model.
vpCameraParametersProjType get_projModel() const
Class to define RGB colors available for display functionalities.
Definition: vpColor.h:157
static const vpColor red
Definition: vpColor.h:217
static const vpColor none
Definition: vpColor.h:229
static const vpColor green
Definition: vpColor.h:220
Display for windows using GDI (available on any windows 32 platform).
Definition: vpDisplayGDI.h:130
The vpDisplayOpenCV allows to display image using the OpenCV library. Thus to enable this class OpenC...
void init(vpImage< unsigned char > &I, int winx=-1, int winy=-1, const std::string &title="") VP_OVERRIDE
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
static bool getKeyboardEvent(const vpImage< unsigned char > &I, bool blocking=true)
static void display(const vpImage< unsigned char > &I)
static void displayFrame(const vpImage< unsigned char > &I, const vpHomogeneousMatrix &cMo, const vpCameraParameters &cam, double size, const vpColor &color=vpColor::none, unsigned int thickness=1, const vpImagePoint &offset=vpImagePoint(0, 0), const std::string &frameName="", const vpColor &textColor=vpColor::black, const vpImagePoint &textOffset=vpImagePoint(15, 15))
static void displayCross(const vpImage< unsigned char > &I, const vpImagePoint &ip, unsigned int size, const vpColor &color, unsigned int thickness=1)
static void setTitle(const vpImage< unsigned char > &I, const std::string &windowtitle)
static void flush(const vpImage< unsigned char > &I)
static void displayRectangle(const vpImage< unsigned char > &I, const vpImagePoint &topLeft, unsigned int width, unsigned int height, const vpColor &color, bool fill=false, unsigned int thickness=1)
static void displayText(const vpImage< unsigned char > &I, const vpImagePoint &ip, const std::string &s, const vpColor &color)
error that can be emitted by ViSP classes.
Definition: vpException.h:60
@ ioError
I/O error.
Definition: vpException.h:67
@ badValue
Used to indicate that a value is not in the allowed range.
Definition: vpException.h:73
static void convert(const vpImage< unsigned char > &src, vpImage< vpRGBa > &dest)
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:82
static double distance(const vpImagePoint &iP1, const vpImagePoint &iP2)
unsigned int getWidth() const
Definition: vpImage.h:242
unsigned int getSize() const
Definition: vpImage.h:221
unsigned int getHeight() const
Definition: vpImage.h:181
Command line argument parsing with support for JSON files. If a JSON file is supplied,...
static double getMean(const std::vector< double > &v)
Definition: vpMath.cpp:302
static bool isNumber(const std::string &str)
Definition: vpMath.cpp:214
vpHomogeneousMatrix cTo
Definition: vpMegaPose.h:70
A simplified interface to track a single object with MegaPose. This tracker works asynchronously: A c...
Definition: vpRGBa.h:65
unsigned char B
Blue component.
Definition: vpRGBa.h:169
unsigned char R
Red component.
Definition: vpRGBa.h:167
unsigned char G
Green component.
Definition: vpRGBa.h:168
Defines a rectangle in the plane.
Definition: vpRect.h:79
void getCenter(double &x, double &y) const
Definition: vpRect.h:136
VISP_EXPORT int wait(double t0, double t)
VISP_EXPORT double measureTimeMs()