Visual Servoing Platform  version 3.3.1 under development (2020-08-12)
testRealSense2_T265_images_odometry_async.cpp

This example shows how to retrieve asynchronous data from a RealSense T265 sensor with librealsense2. Odometry at 200Hz and images at 30Hz.

/****************************************************************************
*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2019 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See http://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Asynchronous acquisition of images and odometry information with
* RealSense T265 sensor and librealsense2.
*
*****************************************************************************/
#include <iostream>
#include <visp3/core/vpMeterPixelConversion.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/sensor/vpRealSense2.h>
#if defined(VISP_HAVE_REALSENSE2) && (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11) && \
(defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI)) && \
(RS2_API_VERSION > ((2 * 10000) + (31 * 100) + 0))
#include <thread>
int main()
{
vpHomogeneousMatrix cMw, cMw_0;
vpHomogeneousMatrix cextMw(0, 0, 2, 0, 0, 0); // External camera view for pose visualization
vpColVector odo_vel, odo_acc, imu_acc, imu_vel;
unsigned int confidence;
vpImagePoint frame_origin;
std::list< std::pair<unsigned int, vpImagePoint> > frame_origins; // Frame origin's history for trajectory visualization
unsigned int display_scale = 2;
try {
rs2::pipeline pipe;
{
// The following code is in brackets to ensure rs2::pipeline_profile rs2::device destructors are called.
// Otherwise you should use pointers and call explicitely the destructor
rs2::pipeline_profile pipeline_profile = pipe.start();
rs2::device dev = pipeline_profile.get_device();
// Query device product line D400/SR300/L500/T200
std::string product_line = dev.get_info(RS2_CAMERA_INFO_PRODUCT_LINE);
std::cout << "Product line: " << product_line << std::endl;
if (product_line != "T200") {
std::cout << "This example doesn't support devices that are not part of T200 product line family !" << std::endl;
return EXIT_SUCCESS;
}
pipe.stop();
}
rs2::config config;
config.enable_stream(RS2_STREAM_POSE, RS2_FORMAT_6DOF);
config.enable_stream(RS2_STREAM_FISHEYE, 1, RS2_FORMAT_Y8);
config.enable_stream(RS2_STREAM_FISHEYE, 2, RS2_FORMAT_Y8);
// Creating images for left and right cameras, and for visualizing trajectory
vpImage<unsigned char> I_left, I_right;
vpImage<unsigned char> I_pose(300, 300, 0);
vpCameraParameters cam(300., 300., I_pose.getWidth()/2, I_pose.getHeight()/2); // For pose visualization
// Define frame callback
// The callback is executed on a sensor thread and can be called simultaneously from multiple sensors
// Therefore any modification to common memory should be done under lock
auto callback = [&](const rs2::frame& frame)
{
if (rs2::frameset fs = frame.as<rs2::frameset>())
{
// With callbacks, all synchronized stream will arrive in a single frameset
rs2::video_frame left_frame = fs.get_fisheye_frame(1);
size_t size = left_frame.get_width() * left_frame.get_height();
memcpy(I_left.bitmap, left_frame.get_data(), size);
rs2::video_frame right_frame = fs.get_fisheye_frame(2);
size = right_frame.get_width() * right_frame.get_height();
memcpy(I_right.bitmap, right_frame.get_data(), size);
rs2_pose pose_data = fs.get_pose_frame().get_pose_data();
vpTranslationVector ctw(static_cast<double>(pose_data.translation.x),
static_cast<double>(pose_data.translation.y),
static_cast<double>(pose_data.translation.z));
vpQuaternionVector cqw(static_cast<double>(pose_data.rotation.x),
static_cast<double>(pose_data.rotation.y),
static_cast<double>(pose_data.rotation.z),
static_cast<double>(pose_data.rotation.w));
cMw.buildFrom(ctw, cqw);
odo_vel.resize(6, false);
odo_vel[0] = static_cast<double>(pose_data.velocity.x);
odo_vel[1] = static_cast<double>(pose_data.velocity.y);
odo_vel[2] = static_cast<double>(pose_data.velocity.z);
odo_vel[3] = static_cast<double>(pose_data.angular_velocity.x);
odo_vel[4] = static_cast<double>(pose_data.angular_velocity.y);
odo_vel[5] = static_cast<double>(pose_data.angular_velocity.z);
odo_acc.resize(6, false);
odo_acc[0] = static_cast<double>(pose_data.acceleration.x);
odo_acc[1] = static_cast<double>(pose_data.acceleration.y);
odo_acc[2] = static_cast<double>(pose_data.acceleration.z);
odo_acc[3] = static_cast<double>(pose_data.angular_acceleration.x);
odo_acc[4] = static_cast<double>(pose_data.angular_acceleration.y);
odo_acc[5] = static_cast<double>(pose_data.angular_acceleration.z);
confidence = pose_data.tracker_confidence;
}
else
{
// Stream that bypass synchronization (such as IMU, Pose, ...) will produce single frames
rs2_pose pose_data = frame.as<rs2::pose_frame>().get_pose_data();
vpTranslationVector ctw(static_cast<double>(pose_data.translation.x),
static_cast<double>(pose_data.translation.y),
static_cast<double>(pose_data.translation.z));
vpQuaternionVector cqw(static_cast<double>(pose_data.rotation.x),
static_cast<double>(pose_data.rotation.y),
static_cast<double>(pose_data.rotation.z),
static_cast<double>(pose_data.rotation.w));
cMw.buildFrom(ctw, cqw);
odo_vel.resize(6, false);
odo_vel[0] = static_cast<double>(pose_data.velocity.x);
odo_vel[1] = static_cast<double>(pose_data.velocity.y);
odo_vel[2] = static_cast<double>(pose_data.velocity.z);
odo_vel[3] = static_cast<double>(pose_data.angular_velocity.x);
odo_vel[4] = static_cast<double>(pose_data.angular_velocity.y);
odo_vel[5] = static_cast<double>(pose_data.angular_velocity.z);
odo_acc.resize(6, false);
odo_acc[0] = static_cast<double>(pose_data.acceleration.x);
odo_acc[1] = static_cast<double>(pose_data.acceleration.y);
odo_acc[2] = static_cast<double>(pose_data.acceleration.z);
odo_acc[3] = static_cast<double>(pose_data.angular_acceleration.x);
odo_acc[4] = static_cast<double>(pose_data.angular_acceleration.y);
odo_acc[5] = static_cast<double>(pose_data.angular_acceleration.z);
confidence = pose_data.tracker_confidence;
}
// Calculate the frame's origin to be projected on the image I_pose and append it to frame_origins
vpHomogeneousMatrix cextMc = cextMw * cMw.inverse();
vpMeterPixelConversion::convertPoint(cam, cextMc[0][3] / cextMc[2][3], cextMc[1][3] / cextMc[2][3], frame_origin);
frame_origins.push_back(std::make_pair(confidence, frame_origin));
};
// Start the pipline streaming according to configuration
rs2::pipeline_profile profiles = pipe.start(config, callback);
I_left.resize(profiles.get_stream(RS2_STREAM_FISHEYE).as<rs2::video_stream_profile>().height(),
profiles.get_stream(RS2_STREAM_FISHEYE).as<rs2::video_stream_profile>().width());
I_right.resize(profiles.get_stream(RS2_STREAM_FISHEYE).as<rs2::video_stream_profile>().height(),
profiles.get_stream(RS2_STREAM_FISHEYE).as<rs2::video_stream_profile>().width());
#if defined(VISP_HAVE_X11)
vpDisplayX display_left; // Left image
vpDisplayX display_right; // Right image
vpDisplayX display_pose; // Pose visualization
#elif defined(VISP_HAVE_GDI)
vpDisplayGDI display_left; // Left image
vpDisplayGDI display_right; // Right image
vpDisplayGDI display_pose; // Pose visualization
#endif
#if defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI)
display_left.setDownScalingFactor(display_scale);
display_right.setDownScalingFactor(display_scale);
display_left.init(I_left, 10, 10, "Left image");
display_right.init(I_right, static_cast<int>(I_left.getWidth()/display_scale) + 80, 10, "Right image"); // Right
display_pose.init(I_pose, 10, static_cast<int>(I_left.getHeight()/display_scale) + 80, "Pose visualizer"); // visualization
#endif
vpHomogeneousMatrix cextMc_0 = cextMw * cMw_0.inverse();
vpMeterPixelConversion::convertPoint(cam, cextMc_0[0][3] / cextMc_0[2][3], cextMc_0[1][3] / cextMc_0[2][3], frame_origin);
frame_origins.push_back(std::make_pair(confidence, frame_origin));
while (true) {
// Sleep for 1 millisecond to reduce the number of iterations
std::this_thread::sleep_for(std::chrono::milliseconds(1));
vpHomogeneousMatrix cextMc = cextMw * cMw.inverse();
vpMeterPixelConversion::convertPoint(cam, cextMc[0][3] / cextMc[2][3], cextMc[1][3] / cextMc[2][3], frame_origin);
frame_origins.push_back(std::make_pair(confidence, frame_origin));
vpDisplay::displayText(I_left, 15*display_scale, 15*display_scale, "Click to quit", vpColor::red);
vpDisplay::displayText(I_right, 15*display_scale, 15*display_scale, "Click to quit", vpColor::red);
vpDisplay::displayText(I_pose, 15, 15, "Click to quit", vpColor::red);
vpDisplay::displayFrame(I_pose, cextMc_0, cam, 0.1, vpColor::none, 2); // First frame
vpDisplay::displayFrame(I_pose, cextMc , cam, 0.1, vpColor::none, 2);
// Display frame origin trajectory
{
std::list< std::pair<unsigned int, vpImagePoint> >::const_iterator it = frame_origins.begin();
std::pair<unsigned int, vpImagePoint> frame_origin_pair_prev = *(it++);
for (; it != frame_origins.end(); ++it) {
if (vpImagePoint::distance(frame_origin_pair_prev.second, (*it).second) > 1) {
vpDisplay::displayLine(I_pose, frame_origin_pair_prev.second, (*it).second,
(*it).first == 3 ? vpColor::green : ((*it).first == 2 ? vpColor::yellow : vpColor::red), 2);
frame_origin_pair_prev = *it;
}
}
}
if (vpDisplay::getClick(I_left, false) || vpDisplay::getClick(I_right, false) || vpDisplay::getClick(I_pose, false)) {
break;
}
vpDisplay::flush(I_right);
}
} catch (const vpException &e) {
std::cerr << "RealSense error " << e.what() << std::endl;
} catch (const std::exception &e) {
std::cerr << e.what() << std::endl;
}
return EXIT_SUCCESS;
}
#else
int main()
{
#if !defined(VISP_HAVE_REALSENSE2)
std::cout << "You do not realsense2 SDK functionality enabled..." << std::endl;
std::cout << "Tip:" << std::endl;
std::cout << "- Install librealsense2, configure again ViSP using cmake and build again this example" << std::endl;
return EXIT_SUCCESS;
#elif (VISP_CXX_STANDARD < VISP_CXX_STANDARD_11)
std::cout << "You do not build ViSP with c++11 or higher compiler flag" << std::endl;
std::cout << "Tip:" << std::endl;
std::cout << "- Configure ViSP again using cmake -DUSE_CXX_STANDARD=11, and build again this example" << std::endl;
#elif !(defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI))
std::cout << "You don't have X11 or GDI display capabilities" << std::endl;
#elif !(RS2_API_VERSION > ((2 * 10000) + (31 * 100) + 0))
std::cout << "Install librealsense version > 2.31.0" << std::endl;
#endif
return EXIT_SUCCESS;
}
#endif