Visual Servoing Platform  version 3.6.1 under development (2024-11-15)
servoSimuPoint2DCamVelocity3.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See https://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * Simulation of a 2D visual servoing on a point.
33  *
34 *****************************************************************************/
35 
50 #include <stdio.h>
51 #include <stdlib.h>
52 
53 #include <visp3/core/vpConfig.h>
54 #include <visp3/core/vpHomogeneousMatrix.h>
55 #include <visp3/core/vpMath.h>
56 #include <visp3/io/vpParseArgv.h>
57 #include <visp3/robot/vpSimulatorCamera.h>
58 #include <visp3/visual_features/vpFeatureBuilder.h>
59 #include <visp3/visual_features/vpFeaturePoint.h>
60 #include <visp3/vs/vpServo.h>
61 
62 // List of allowed command line options
63 #define GETOPTARGS "h"
64 
65 #ifdef ENABLE_VISP_NAMESPACE
66 using namespace VISP_NAMESPACE_NAME;
67 #endif
68 
69 void usage(const char *name, const char *badparam);
70 bool getOptions(int argc, const char **argv);
71 
80 void usage(const char *name, const char *badparam)
81 {
82  fprintf(stdout, "\n\
83 Simulation of a 2D visual servoing on a point:\n\
84 - eye-in-hand control law,\n\
85 - articular velocity are computed,\n\
86 - without display,\n\
87 - only the X coordinate of the point is selected.\n\
88  \n\
89 SYNOPSIS\n\
90  %s [-h]\n",
91  name);
92 
93  fprintf(stdout, "\n\
94 OPTIONS: Default\n\
95  \n\
96  -h\n\
97  Print the help.\n");
98 
99  if (badparam)
100  fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
101 }
102 
113 bool getOptions(int argc, const char **argv)
114 {
115  const char *optarg_;
116  int c;
117  while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
118 
119  switch (c) {
120  case 'h':
121  usage(argv[0], nullptr);
122  return false;
123 
124  default:
125  usage(argv[0], optarg_);
126  return false;
127  }
128  }
129 
130  if ((c == 1) || (c == -1)) {
131  // standalone param or error
132  usage(argv[0], nullptr);
133  std::cerr << "ERROR: " << std::endl;
134  std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
135  return false;
136  }
137 
138  return true;
139 }
140 
141 int main(int argc, const char **argv)
142 {
143 #if (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
144  try {
145  // Read the command line options
146  if (getOptions(argc, argv) == false) {
147  return EXIT_FAILURE;
148  }
149 
150  vpServo task;
151  vpSimulatorCamera robot;
152 
153  std::cout << std::endl;
154  std::cout << "-------------------------------------------------------" << std::endl;
155  std::cout << " Test program for vpServo " << std::endl;
156  std::cout << " Eye-in-hand task control, articular velocity are computed" << std::endl;
157  std::cout << " Simulation " << std::endl;
158  std::cout << " task : servo a point " << std::endl;
159  std::cout << "-------------------------------------------------------" << std::endl;
160  std::cout << std::endl;
161 
162  // sets the initial camera location
164  cMo[0][3] = 0.1;
165  cMo[1][3] = 0.2;
166  cMo[2][3] = 2;
167  // Compute the position of the object in the world frame
168  vpHomogeneousMatrix wMc, wMo;
169  robot.getPosition(wMc);
170  wMo = wMc * cMo;
171 
172  // sets the point coordinates in the world frame
173  vpPoint point(0, 0, 0);
174 
175  // computes the point coordinates in the camera frame and its 2D
176  // coordinates
177  point.track(cMo);
178 
179  // sets the current position of the visual feature
180  vpFeaturePoint p;
181  vpFeatureBuilder::create(p, point); // retrieve x,y and Z of the vpPoint structure
182 
183  // sets the desired position of the visual feature
184  vpFeaturePoint pd;
185  pd.buildFrom(0, 0, 1); // buildFrom(x,y,Z) ;
186 
187  // define the task
188  // - we want an eye-in-hand control law
189  // - articular velocity are computed
191 
192  // Set the position of the end-effector frame in the camera frame as identity
194  vpVelocityTwistMatrix cVe(cMe);
195  task.set_cVe(cVe);
196 
197  // Set the Jacobian (expressed in the end-effector frame)
198  vpMatrix eJe;
199  robot.get_eJe(eJe);
200  task.set_eJe(eJe);
201 
202  // we want to see a point on a point
203  task.addFeature(p, pd, vpFeaturePoint::selectX());
204 
205  // set the gain
206  task.setLambda(1);
207 
208  // Display task information
209  task.print();
210 
211  unsigned int iter = 0;
212  // loop
213  while (iter++ < 100) {
214  std::cout << "---------------------------------------------" << iter << std::endl;
215  vpColVector v;
216 
217  // Set the Jacobian (expressed in the end-effector frame)
218  // since q is modified eJe is modified
219  robot.get_eJe(eJe);
220  task.set_eJe(eJe);
221 
222  // get the robot position
223  robot.getPosition(wMc);
224  // Compute the position of the object frame in the camera frame
225  cMo = wMc.inverse() * wMo;
226 
227  // new point position
228  point.track(cMo);
229  vpFeatureBuilder::create(p, point); // retrieve x,y and Z of the vpPoint structure
230 
231  // compute the control law
232  v = task.computeControlLaw();
233 
234  // send the camera velocity to the controller
236 
237  std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
238  }
239 
240  // Display task information
241  task.print();
242  return EXIT_SUCCESS;
243  }
244  catch (const vpException &e) {
245  std::cout << "Catch a ViSP exception: " << e << std::endl;
246  return EXIT_FAILURE;
247  }
248 #else
249  (void)argc;
250  (void)argv;
251  std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
252  return EXIT_SUCCESS;
253 #endif
254 }
Implementation of column vector and the associated operations.
Definition: vpColVector.h:191
error that can be emitted by ViSP classes.
Definition: vpException.h:60
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpImagePoint &t)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
vpFeaturePoint & buildFrom(const double &x, const double &y, const double &Z)
static unsigned int selectX()
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:169
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:70
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:79
void get_eJe(vpMatrix &eJe) VP_OVERRIDE
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) VP_OVERRIDE
@ CAMERA_FRAME
Definition: vpRobot.h:84
@ EYEINHAND_L_cVe_eJe
Definition: vpServo.h:168
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:331
void set_cVe(const vpVelocityTwistMatrix &cVe_)
Definition: vpServo.h:1038
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:171
void setLambda(double c)
Definition: vpServo.h:986
void set_eJe(const vpMatrix &eJe_)
Definition: vpServo.h:1101
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:134
vpColVector getError() const
Definition: vpServo.h:510
vpColVector computeControlLaw()
Definition: vpServo.cpp:705
Class that defines the simplest robot: a free flying camera.