Visual Servoing Platform  version 3.4.0
testPoseRansac2.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See http://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * Test RANSAC 3D pose estimation method.
33  *
34  *****************************************************************************/
35 
36 #include <visp3/core/vpConfig.h>
37 
38 #ifdef VISP_HAVE_CATCH2
39 #define CATCH_CONFIG_RUNNER
40 #include <catch.hpp>
41 
42 #include <algorithm>
43 #include <iomanip>
44 #include <map>
45 #include <visp3/core/vpGaussRand.h>
46 #include <visp3/core/vpHomogeneousMatrix.h>
47 #include <visp3/core/vpIoTools.h>
48 #include <visp3/core/vpMath.h>
49 #include <visp3/core/vpPoint.h>
50 #include <visp3/vision/vpPose.h>
51 
52 namespace
53 {
54 
55 bool samePoints(const vpPoint &pt1, const vpPoint &pt2)
56 {
57  return vpMath::equal(pt1.get_oX(), pt2.get_oX(), std::numeric_limits<double>::epsilon()) &&
58  vpMath::equal(pt1.get_oY(), pt2.get_oY(), std::numeric_limits<double>::epsilon()) &&
59  vpMath::equal(pt1.get_oZ(), pt2.get_oZ(), std::numeric_limits<double>::epsilon()) &&
60  vpMath::equal(pt1.get_x(), pt2.get_x(), std::numeric_limits<double>::epsilon()) &&
61  vpMath::equal(pt1.get_y(), pt2.get_y(), std::numeric_limits<double>::epsilon());
62 }
63 
64 int checkInlierIndex(const std::vector<unsigned int> &vectorOfFoundInlierIndex,
65  const std::vector<bool> &vectorOfOutlierFlags)
66 {
67  int nbInlierIndexOk = 0;
68 
69  for (std::vector<unsigned int>::const_iterator it = vectorOfFoundInlierIndex.begin();
70  it != vectorOfFoundInlierIndex.end(); ++it) {
71  if (!vectorOfOutlierFlags[*it]) {
72  nbInlierIndexOk++;
73  }
74  }
75 
76  return nbInlierIndexOk;
77 }
78 
79 bool checkInlierPoints(const std::vector<vpPoint> &vectorOfFoundInlierPoints,
80  const std::vector<unsigned int> &vectorOfFoundInlierIndex,
81  const std::vector<vpPoint> &bunnyModelPoints_noisy)
82 {
83  for (size_t i = 0; i < vectorOfFoundInlierPoints.size(); i++) {
84  if (!samePoints(vectorOfFoundInlierPoints[i], bunnyModelPoints_noisy[vectorOfFoundInlierIndex[i]])) {
85  std::cerr << "Problem with the inlier index and the corresponding "
86  "inlier point!"
87  << std::endl;
88  std::cerr << "Returned inliers: oX=" << std::setprecision(std::numeric_limits<double>::max_digits10)
89  << vectorOfFoundInlierPoints[i].get_oX()
90  << ", oY=" << vectorOfFoundInlierPoints[i].get_oY()
91  << ", oZ=" << vectorOfFoundInlierPoints[i].get_oZ()
92  << " ; x=" << vectorOfFoundInlierPoints[i].get_x()
93  << ", y=" << vectorOfFoundInlierPoints[i].get_y()
94  << std::endl;
95  const vpPoint& pt = bunnyModelPoints_noisy[vectorOfFoundInlierIndex[i]];
96  std::cerr << "Object points: oX=" << std::setprecision(std::numeric_limits<double>::max_digits10)
97  << pt.get_oX()
98  << ", oY=" << pt.get_oY()
99  << ", oZ=" << pt.get_oZ()
100  << " ; x=" << pt.get_x()
101  << ", y=" << pt.get_y()
102  << std::endl;
103  return false;
104  }
105  }
106 
107  return true;
108 }
109 
110 void readBunnyModelPoints(const std::string &filename, std::vector<vpPoint> &bunnyModelPoints,
111  std::vector<vpPoint> &bunnyModelPoints_noisy)
112 {
113  // Read the model
114  std::ifstream file(filename);
115  if (!file.is_open()) {
116  return;
117  }
118 
119  // ground truth cMo
120  const vpTranslationVector translation(-0.14568, 0.154567, 1.4462);
121  const vpRzyxVector zyxVector(vpMath::rad(12.4146f), vpMath::rad(-75.5478f), vpMath::rad(138.5607f));
122  vpHomogeneousMatrix cMo_groundTruth(translation, vpThetaUVector(zyxVector));
123 
124  vpGaussRand gaussian_noise(0.0002, 0.0);
125  double oX = 0, oY = 0, oZ = 0;
126 
127  while (file >> oX >> oY >> oZ) {
128  vpPoint pt(oX, oY, oZ);
129  pt.project(cMo_groundTruth);
130  bunnyModelPoints.push_back(pt);
131 
132  // Add a small gaussian noise to the data
133  pt.set_x(pt.get_x() + gaussian_noise());
134  pt.set_y(pt.get_y() + gaussian_noise());
135  bunnyModelPoints_noisy.push_back(pt);
136  }
137 
138  // Print the number of model points
139  std::cout << "The raw model contains " << bunnyModelPoints.size() << " points." << std::endl;
140  std::cout << "cMo_groundTruth=\n" << cMo_groundTruth << std::endl << std::endl;
141 }
142 
143 bool testRansac(const std::vector<vpPoint> &bunnyModelPoints_original,
144  const std::vector<vpPoint> &bunnyModelPoints_noisy_original,
145  size_t nb_model_points, bool test_duplicate, bool test_degenerate)
146 {
147  std::vector<vpPoint> bunnyModelPoints = bunnyModelPoints_original;
148  std::vector<vpPoint> bunnyModelPoints_noisy = bunnyModelPoints_noisy_original;
149  // Resize
150  if (nb_model_points > 0) {
151  bunnyModelPoints.resize(nb_model_points);
152  bunnyModelPoints_noisy.resize(nb_model_points);
153  }
154 
155  vpPose ground_truth_pose, real_pose;
156  ground_truth_pose.addPoints(bunnyModelPoints);
157  real_pose.addPoints(bunnyModelPoints_noisy);
158 
159  vpHomogeneousMatrix cMo_dementhon, cMo_lagrange;
160  real_pose.computePose(vpPose::DEMENTHON, cMo_dementhon);
161  real_pose.computePose(vpPose::LAGRANGE, cMo_lagrange);
162  double r_dementhon = real_pose.computeResidual(cMo_dementhon);
163  double r_lagrange = real_pose.computeResidual(cMo_lagrange);
164 
165  vpHomogeneousMatrix cMo_estimated;
166  if (r_lagrange < r_dementhon) {
167  cMo_estimated = cMo_lagrange;
168  } else {
169  cMo_estimated = cMo_dementhon;
170  }
171  real_pose.computePose(vpPose::VIRTUAL_VS, cMo_estimated);
172  double r_vvs = ground_truth_pose.computeResidual(cMo_estimated);
173 
174  std::cout << "\ncMo estimated using VVS on data with small gaussian noise:\n" << cMo_estimated << std::endl;
175  std::cout << "Corresponding residual: " << r_vvs << std::endl;
176 
177  size_t nbOutliers = (size_t)(0.35 * bunnyModelPoints_noisy.size());
178  vpGaussRand noise(0.01, 0.008);
179  // Vector that indicates if the point is an outlier or not
180  std::vector<bool> vectorOfOutlierFlags(bunnyModelPoints_noisy.size(), false);
181  // Generate outliers points
182  for (size_t i = 0; i < nbOutliers; i++) {
183  bunnyModelPoints_noisy[i].set_x(bunnyModelPoints_noisy[i].get_x() + noise());
184  bunnyModelPoints_noisy[i].set_y(bunnyModelPoints_noisy[i].get_y() + noise());
185  vectorOfOutlierFlags[i] = true;
186  }
187 
188  if (test_duplicate) {
189  // Add some duplicate points
190  size_t nbDuplicatePoints = 100;
191  for (size_t i = 0; i < nbDuplicatePoints; i++) {
192  size_t index = (size_t)rand() % bunnyModelPoints_noisy.size();
193  vpPoint duplicatePoint = bunnyModelPoints_noisy[index];
194  bunnyModelPoints_noisy.push_back(duplicatePoint);
195  vectorOfOutlierFlags.push_back(true);
196  }
197  }
198 
199  if (test_degenerate) {
200  // Add some degenerate points
201  size_t nbDegeneratePoints = 100;
202  double degenerate_tolerence = 9.999e-7; // 1e-6 is used in the code to
203  // detect if a point is degenerate
204  // or not
205  std::vector<vpPoint> listOfDegeneratePoints;
206  for (size_t i = 0; i < nbDegeneratePoints; i++) {
207  size_t index = (size_t)rand() % bunnyModelPoints_noisy.size();
208  vpPoint degeneratePoint = bunnyModelPoints_noisy[index];
209 
210  // Object point is degenerate
211  degeneratePoint.set_oX(degeneratePoint.get_oX() + degenerate_tolerence);
212  degeneratePoint.set_oY(degeneratePoint.get_oY() + degenerate_tolerence);
213  degeneratePoint.set_oZ(degeneratePoint.get_oZ() - degenerate_tolerence);
214 
215  // Add duplicate 3D points
216  listOfDegeneratePoints.push_back(degeneratePoint);
217 
218  // Image point is degenerate
219  index = (size_t)rand() % bunnyModelPoints_noisy.size();
220  degeneratePoint = bunnyModelPoints_noisy[index];
221 
222  degeneratePoint.set_x(degeneratePoint.get_x() + degenerate_tolerence);
223  degeneratePoint.set_y(degeneratePoint.get_y() - degenerate_tolerence);
224 
225  // Add duplicate 2D points
226  listOfDegeneratePoints.push_back(degeneratePoint);
227  }
228 
229  for (std::vector<vpPoint>::const_iterator it_degenerate = listOfDegeneratePoints.begin();
230  it_degenerate != listOfDegeneratePoints.end(); ++it_degenerate) {
231  bunnyModelPoints_noisy.push_back(*it_degenerate);
232  vectorOfOutlierFlags.push_back(true);
233  }
234  }
235 
236  // Shuffle the data vector
237  std::vector<size_t> vectorOfIndex(bunnyModelPoints_noisy.size());
238  for (size_t i = 0; i < vectorOfIndex.size(); i++) {
239  vectorOfIndex[i] = i;
240  }
241 
242  //std::random_shuffle(vectorOfIndex.begin(), vectorOfIndex.end()); // std::random_shuffle is deprecated in C++14
243  std::random_device rng;
244  std::mt19937 urng(rng());
245  std::shuffle(vectorOfIndex.begin(), vectorOfIndex.end(), urng);
246 
247  std::vector<vpPoint> bunnyModelPoints_noisy_tmp = bunnyModelPoints_noisy;
248  bunnyModelPoints_noisy.clear();
249  std::vector<bool> vectorOfOutlierFlags_tmp = vectorOfOutlierFlags;
250  vectorOfOutlierFlags.clear();
251  for (std::vector<size_t>::const_iterator it = vectorOfIndex.begin(); it != vectorOfIndex.end(); ++it) {
252  bunnyModelPoints_noisy.push_back(bunnyModelPoints_noisy_tmp[*it]);
253  vectorOfOutlierFlags.push_back(vectorOfOutlierFlags_tmp[*it]);
254  }
255 
256  // Add data to vpPose
257  vpPose pose;
258  vpPose pose_ransac, pose_ransac2;
259 
260  vpPose pose_ransac_parallel, pose_ransac_parallel2;
261  pose_ransac_parallel.setUseParallelRansac(true);
262  pose_ransac_parallel2.setUseParallelRansac(true);
263 
268  for (std::vector<vpPoint>::const_iterator it = bunnyModelPoints_noisy.begin(); it != bunnyModelPoints_noisy.end(); ++it) {
269  pose.addPoint(*it);
270  }
271  // Test addPoints
272  pose_ransac.addPoints(bunnyModelPoints_noisy);
273  pose_ransac2.addPoints(bunnyModelPoints_noisy);
274  pose_ransac_parallel.addPoints(bunnyModelPoints_noisy);
275  pose_ransac_parallel2.addPoints(bunnyModelPoints_noisy);
276 
277  // Print the number of points in the final data vector
278  std::cout << "\nNumber of model points in the noisy data vector: " << bunnyModelPoints_noisy.size() << " points."
279  << std::endl
280  << std::endl;
281 
282  unsigned int nbInlierToReachConsensus = (unsigned int)(60.0 * (double)(bunnyModelPoints_noisy.size()) / 100.0);
283  double threshold = 0.001;
284 
285  // RANSAC with 1000 iterations
286  pose_ransac.setRansacNbInliersToReachConsensus(nbInlierToReachConsensus);
287  pose_ransac.setRansacThreshold(threshold);
288  pose_ransac.setRansacMaxTrials(1000);
289  pose_ransac_parallel.setRansacNbInliersToReachConsensus(nbInlierToReachConsensus);
290  pose_ransac_parallel.setRansacThreshold(threshold);
291  pose_ransac_parallel.setRansacMaxTrials(1000);
292 
293  pose_ransac_parallel2.setRansacNbInliersToReachConsensus(nbInlierToReachConsensus);
294  pose_ransac_parallel2.setRansacThreshold(threshold);
295  pose_ransac_parallel2.setRansacMaxTrials(vpPose::computeRansacIterations(0.99, 0.4, 4, -1));
296 
297  // RANSAC with p=0.99, epsilon=0.4
298  pose_ransac2.setRansacNbInliersToReachConsensus(nbInlierToReachConsensus);
299  pose_ransac2.setRansacThreshold(threshold);
300  int ransac_iterations = vpPose::computeRansacIterations(0.99, 0.4, 4, -1);
301  pose_ransac2.setRansacMaxTrials(ransac_iterations);
302  std::cout << "Number of RANSAC iterations to ensure p=0.99 and epsilon=0.4: " << ransac_iterations << std::endl;
303 
304  vpHomogeneousMatrix cMo_estimated_RANSAC;
305  vpChrono chrono_RANSAC;
306  chrono_RANSAC.start();
307  pose_ransac.computePose(vpPose::RANSAC, cMo_estimated_RANSAC);
308  chrono_RANSAC.stop();
309 
310  std::cout << "\ncMo estimated with RANSAC (1000 iterations) on noisy data:\n" << cMo_estimated_RANSAC << std::endl;
311  std::cout << "Computation time: " << chrono_RANSAC.getDurationMs() << " ms" << std::endl;
312 
313  double r_RANSAC_estimated = ground_truth_pose.computeResidual(cMo_estimated_RANSAC);
314  std::cout << "Corresponding residual (1000 iterations): " << r_RANSAC_estimated << std::endl;
315 
316  vpHomogeneousMatrix cMo_estimated_RANSAC_2;
317  chrono_RANSAC.start();
318  pose_ransac2.computePose(vpPose::RANSAC, cMo_estimated_RANSAC_2);
319  chrono_RANSAC.stop();
320 
321  std::cout << "\ncMo estimated with RANSAC (" << ransac_iterations << " iterations) on noisy data:\n"
322  << cMo_estimated_RANSAC_2 << std::endl;
323  std::cout << "Computation time: " << chrono_RANSAC.getDurationMs() << " ms" << std::endl;
324 
325  double r_RANSAC_estimated_2 = ground_truth_pose.computeResidual(cMo_estimated_RANSAC_2);
326  std::cout << "Corresponding residual (" << ransac_iterations << " iterations): " << r_RANSAC_estimated_2 << std::endl;
327 
328  pose.computePose(vpPose::DEMENTHON, cMo_dementhon);
329  pose.computePose(vpPose::LAGRANGE, cMo_lagrange);
330  r_dementhon = pose.computeResidual(cMo_dementhon);
331  r_lagrange = pose.computeResidual(cMo_lagrange);
332 
333  if (r_lagrange < r_dementhon) {
334  cMo_estimated = cMo_lagrange;
335  } else {
336  cMo_estimated = cMo_dementhon;
337  }
338 
339  pose.computePose(vpPose::VIRTUAL_VS, cMo_estimated);
340  std::cout << "\ncMo estimated with only VVS on noisy data:\n" << cMo_estimated << std::endl;
341 
342  double r_estimated = ground_truth_pose.computeResidual(cMo_estimated);
343  std::cout << "Corresponding residual: " << r_estimated << std::endl;
344 
345  vpHomogeneousMatrix cMo_estimated_RANSAC_parallel;
346  vpChrono chrono_RANSAC_parallel;
347  chrono_RANSAC_parallel.start();
348  pose_ransac_parallel.computePose(vpPose::RANSAC, cMo_estimated_RANSAC_parallel);
349  chrono_RANSAC_parallel.stop();
350 
351  std::cout << "\ncMo estimated with parallel RANSAC (1000 iterations) on "
352  "noisy data:\n"
353  << cMo_estimated_RANSAC_parallel << std::endl;
354  std::cout << "Computation time: " << chrono_RANSAC_parallel.getDurationMs() << " ms" << std::endl;
355 
356  double r_RANSAC_estimated_parallel = ground_truth_pose.computeResidual(cMo_estimated_RANSAC_parallel);
357  std::cout << "Corresponding residual (1000 iterations): " << r_RANSAC_estimated_parallel << std::endl;
358 
359  vpHomogeneousMatrix cMo_estimated_RANSAC_parallel2;
360  vpChrono chrono_RANSAC_parallel2;
361  chrono_RANSAC_parallel2.start();
362  pose_ransac_parallel2.computePose(vpPose::RANSAC, cMo_estimated_RANSAC_parallel2);
363  chrono_RANSAC_parallel2.stop();
364 
365  std::cout << "\ncMo estimated with parallel RANSAC (" << ransac_iterations << " iterations) on noisy data:\n"
366  << cMo_estimated_RANSAC_parallel2 << std::endl;
367  std::cout << "Computation time: " << chrono_RANSAC_parallel2.getDurationMs() << " ms" << std::endl;
368 
369  double r_RANSAC_estimated_parallel2 = ground_truth_pose.computeResidual(cMo_estimated_RANSAC_parallel2);
370  std::cout << "Corresponding residual (" << ransac_iterations << " iterations): " << r_RANSAC_estimated_parallel2
371  << std::endl;
372 
373  // Check inlier index
374  std::vector<unsigned int> vectorOfFoundInlierIndex = pose_ransac.getRansacInlierIndex();
375  int nbInlierIndexOk = checkInlierIndex(vectorOfFoundInlierIndex, vectorOfOutlierFlags);
376 
377  int nbTrueInlierIndex = (int)std::count(vectorOfOutlierFlags.begin(), vectorOfOutlierFlags.end(), false);
378  std::cout << "\nThere are " << nbInlierIndexOk << " true inliers found, " << vectorOfFoundInlierIndex.size()
379  << " inliers returned and " << nbTrueInlierIndex << " true inliers." << std::endl;
380 
381  // Check inlier points returned
382  std::vector<vpPoint> vectorOfFoundInlierPoints = pose_ransac.getRansacInliers();
383 
384  if (vectorOfFoundInlierPoints.size() != vectorOfFoundInlierIndex.size()) {
385  std::cerr << "The number of inlier index is different from the number of "
386  "inlier points!"
387  << std::endl;
388  return false;
389  }
390  if (!checkInlierPoints(vectorOfFoundInlierPoints, vectorOfFoundInlierIndex, bunnyModelPoints_noisy)) {
391  return false;
392  }
393 
394  // Check for RANSAC with p=0.99, epsilon=0.4
395  // Check inlier index
396  std::cout << "\nCheck for RANSAC iterations: " << ransac_iterations << std::endl;
397  std::vector<unsigned int> vectorOfFoundInlierIndex_2 = pose_ransac2.getRansacInlierIndex();
398  nbInlierIndexOk = checkInlierIndex(vectorOfFoundInlierIndex_2, vectorOfOutlierFlags);
399 
400  std::cout << "There are " << nbInlierIndexOk << " true inliers found, " << vectorOfFoundInlierIndex_2.size()
401  << " inliers returned and " << nbTrueInlierIndex << " true inliers." << std::endl;
402 
403  // Check inlier points returned
404  std::vector<vpPoint> vectorOfFoundInlierPoints_2 = pose_ransac2.getRansacInliers();
405  if (vectorOfFoundInlierPoints_2.size() != vectorOfFoundInlierIndex_2.size()) {
406  std::cerr << "The number of inlier index is different from the number of "
407  "inlier points!"
408  << std::endl;
409  return false;
410  }
411  if (!checkInlierPoints(vectorOfFoundInlierPoints_2, vectorOfFoundInlierIndex_2, bunnyModelPoints_noisy)) {
412  return false;
413  }
414 
415  // Check for parallel RANSAC
416  // Check inlier index
417  std::cout << "\nCheck for parallel RANSAC (1000 iterations)" << std::endl;
418  std::vector<unsigned int> vectorOfFoundInlierIndex_parallel = pose_ransac_parallel.getRansacInlierIndex();
419  nbInlierIndexOk = checkInlierIndex(vectorOfFoundInlierIndex_parallel, vectorOfOutlierFlags);
420 
421  std::cout << "There are " << nbInlierIndexOk << " true inliers found, " << vectorOfFoundInlierIndex_parallel.size()
422  << " inliers returned and " << nbTrueInlierIndex << " true inliers." << std::endl;
423 
424  // Check inlier points returned
425  std::vector<vpPoint> vectorOfFoundInlierPoints_parallel = pose_ransac_parallel.getRansacInliers();
426  if (vectorOfFoundInlierPoints_parallel.size() != vectorOfFoundInlierIndex_parallel.size()) {
427  std::cerr << "The number of inlier index is different from the number "
428  "of inlier points!"
429  << std::endl;
430  return false;
431  }
432  if (!checkInlierPoints(vectorOfFoundInlierPoints_parallel, vectorOfFoundInlierIndex_parallel,
433  bunnyModelPoints_noisy)) {
434  return false;
435  }
436 
437  // Check for parallel RANSAC 2
438  // Check inlier index
439  std::cout << "\nCheck for parallel RANSAC (" << ransac_iterations << " iterations)" << std::endl;
440  std::vector<unsigned int> vectorOfFoundInlierIndex_parallel2 = pose_ransac_parallel2.getRansacInlierIndex();
441  nbInlierIndexOk = checkInlierIndex(vectorOfFoundInlierIndex_parallel2, vectorOfOutlierFlags);
442 
443  std::cout << "There are " << nbInlierIndexOk << " true inliers found, " << vectorOfFoundInlierIndex_parallel2.size()
444  << " inliers returned and " << nbTrueInlierIndex << " true inliers." << std::endl;
445 
446  // Check inlier points returned
447  std::vector<vpPoint> vectorOfFoundInlierPoints_parallel2 = pose_ransac_parallel2.getRansacInliers();
448  if (vectorOfFoundInlierPoints_parallel2.size() != vectorOfFoundInlierIndex_parallel2.size()) {
449  std::cerr << "The number of inlier index is different from the number "
450  "of inlier points!"
451  << std::endl;
452  return false;
453  }
454  if (!checkInlierPoints(vectorOfFoundInlierPoints_parallel2, vectorOfFoundInlierIndex_parallel2,
455  bunnyModelPoints_noisy)) {
456  return false;
457  }
458 
459  if (r_RANSAC_estimated > threshold /*|| r_RANSAC_estimated_2 > threshold*/) {
460  std::cerr << "The pose estimated with the RANSAC method is badly estimated!" << std::endl;
461  std::cerr << "r_RANSAC_estimated=" << r_RANSAC_estimated << std::endl;
462  std::cerr << "threshold=" << threshold << std::endl;
463  return false;
464  } else {
465  if (r_RANSAC_estimated_parallel > threshold) {
466  std::cerr << "The pose estimated with the parallel RANSAC method is "
467  "badly estimated!"
468  << std::endl;
469  std::cerr << "r_RANSAC_estimated_parallel=" << r_RANSAC_estimated_parallel << std::endl;
470  std::cerr << "threshold=" << threshold << std::endl;
471  return false;
472  }
473  std::cout << "The pose estimated with the RANSAC method is well estimated!" << std::endl;
474  }
475 
476  return true;
477 }
478 } //namespace
479 
480 TEST_CASE("Print RANSAC number of iterations", "[ransac_pose]") {
481  const int sample_sizes[] = {2, 3, 4, 5, 6, 7, 8};
482  const double epsilon[] = {0.05, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5};
483 
484  // Format output
485  const std::string spacing = " ";
486 
487  std::cout << spacing << " outliers percentage\n" << "nb pts\\";
488  for (int cpt2 = 0; cpt2 < 7; cpt2++) {
489  std::cout << std::setfill(' ') << std::setw(5) << epsilon[cpt2] << " ";
490  }
491  std::cout << std::endl;
492 
493  std::cout << std::setfill(' ') << std::setw(7) << "+";
494  for (int cpt2 = 0; cpt2 < 6; cpt2++) {
495  std::cout << std::setw(7) << "-------";
496  }
497  std::cout << std::endl;
498 
499  for (int cpt1 = 0; cpt1 < 7; cpt1++) {
500  std::cout << std::setfill(' ') << std::setw(6) << sample_sizes[cpt1] << "|";
501 
502  for (int cpt2 = 0; cpt2 < 7; cpt2++) {
503  int ransac_iters = vpPose::computeRansacIterations(0.99, epsilon[cpt2], sample_sizes[cpt1], -1);
504  std::cout << std::setfill(' ') << std::setw(6) << ransac_iters;
505  }
506  std::cout << std::endl;
507  }
508  std::cout << std::endl;
509 }
510 
511 TEST_CASE("RANSAC pose estimation tests", "[ransac_pose]") {
512  const std::vector<size_t> model_sizes = {10, 20, 50, 100, 200, 500, 1000, 0, 0};
513  const std::vector<bool> duplicates = {false, false, false, false, false, false, false, false, true};
514  const std::vector<bool> degenerates = {false, false, false, false, false, false, true, true, true};
515 
516  std::string visp_input_images = vpIoTools::getViSPImagesDataPath();
517  std::string model_filename = vpIoTools::createFilePath(visp_input_images, "3dmodel/bunny/bunny.xyz");
518  CHECK(vpIoTools::checkFilename(model_filename));
519 
520  std::vector<vpPoint> bunnyModelPoints, bunnyModelPoints_noisy_original;
521  readBunnyModelPoints(model_filename, bunnyModelPoints, bunnyModelPoints_noisy_original);
522  CHECK(bunnyModelPoints.size() == bunnyModelPoints_noisy_original.size());
523 
524  for (size_t i = 0; i < model_sizes.size(); i++) {
525  std::cout << "\n\n==============================================================================="
526  << std::endl;
527  if (model_sizes[i] == 0) {
528  std::cout << "Test on " << bunnyModelPoints_noisy_original.size() << " model points." << std::endl;
529  } else {
530  std::cout << "Test on " << model_sizes[i] << " model points." << std::endl;
531  }
532  std::cout << "Test duplicate: " << duplicates[i] << " ; Test degenerate: " << degenerates[i] << std::endl;
533 
534  CHECK(testRansac(bunnyModelPoints, bunnyModelPoints_noisy_original, model_sizes[i], duplicates[i], degenerates[i]));
535  }
536 }
537 
538 int main(int argc, char* argv[])
539 {
540 #if defined(__mips__) || defined(__mips) || defined(mips) || defined(__MIPS__)
541  // To avoid Debian test timeout
542  return EXIT_SUCCESS;
543 #endif
544 
545 #if (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
546 
547  Catch::Session session; // There must be exactly one instance
548 
549  // Let Catch (using Clara) parse the command line
550  session.applyCommandLine(argc, argv);
551 
552  int numFailed = session.run();
553 
554  // numFailed is clamped to 255 as some unices only use the lower 8 bits.
555  // This clamping has already been applied, so just return it here
556  // You can also do any post run clean-up here
557  return numFailed;
558 #else
559  std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
560  return EXIT_SUCCESS;
561 #endif
562 }
563 #else
564 int main()
565 {
566  return 0;
567 }
568 #endif
bool computePose(vpPoseMethodType method, vpHomogeneousMatrix &cMo, bool(*func)(const vpHomogeneousMatrix &)=NULL)
Definition: vpPose.cpp:374
double getDurationMs()
Definition: vpTime.cpp:392
static std::string getViSPImagesDataPath()
Definition: vpIoTools.cpp:1202
Implementation of an homogeneous matrix and operations on such kind of matrices.
static bool equal(double x, double y, double s=0.001)
Definition: vpMath.h:293
void addPoints(const std::vector< vpPoint > &lP)
Definition: vpPose.cpp:164
double get_oY() const
Get the point oY coordinate in the object frame.
Definition: vpPoint.cpp:449
void setRansacThreshold(const double &t)
Definition: vpPose.h:238
std::vector< unsigned int > getRansacInlierIndex() const
Definition: vpPose.h:249
double get_y() const
Get the point y coordinate in the image plane.
Definition: vpPoint.cpp:458
Implementation of a rotation vector as Euler angle minimal representation.
Definition: vpRzyxVector.h:185
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:81
void set_x(double x)
Set the point x coordinate in the image plane.
Definition: vpPoint.cpp:497
void start(bool reset=true)
Definition: vpTime.cpp:409
void set_y(double y)
Set the point y coordinate in the image plane.
Definition: vpPoint.cpp:499
static std::string createFilePath(const std::string &parent, const std::string &child)
Definition: vpIoTools.cpp:1446
void set_oY(double oY)
Set the point oY coordinate in the object frame.
Definition: vpPoint.cpp:490
void stop()
Definition: vpTime.cpp:424
void setUseParallelRansac(bool use)
Definition: vpPose.h:320
Class used for pose computation from N points (pose from point only). Some of the algorithms implemen...
Definition: vpPose.h:80
double get_oZ() const
Get the point oZ coordinate in the object frame.
Definition: vpPoint.cpp:451
double get_x() const
Get the point x coordinate in the image plane.
Definition: vpPoint.cpp:456
static double rad(double deg)
Definition: vpMath.h:110
void setRansacMaxTrials(const int &rM)
Definition: vpPose.h:247
void setRansacNbInliersToReachConsensus(const unsigned int &nbC)
Definition: vpPose.h:237
double get_oX() const
Get the point oX coordinate in the object frame.
Definition: vpPoint.cpp:447
void set_oZ(double oZ)
Set the point oZ coordinate in the object frame.
Definition: vpPoint.cpp:492
Class for generating random number with normal probability density.
Definition: vpGaussRand.h:120
void set_oX(double oX)
Set the point oX coordinate in the object frame.
Definition: vpPoint.cpp:488
void setRansacFilterFlag(const RANSAC_FILTER_FLAGS &flag)
Definition: vpPose.h:289
static bool checkFilename(const std::string &filename)
Definition: vpIoTools.cpp:640
void addPoint(const vpPoint &P)
Definition: vpPose.cpp:149
Class that consider the case of a translation vector.
Implementation of a rotation vector as axis-angle minimal representation.
static int computeRansacIterations(double probability, double epsilon, const int sampleSize=4, int maxIterations=2000)
std::vector< vpPoint > getRansacInliers() const
Definition: vpPose.h:250
double computeResidual(const vpHomogeneousMatrix &cMo) const
Compute and return the sum of squared residuals expressed in meter^2 for the pose matrix cMo...
Definition: vpPose.cpp:336