Visual Servoing Platform  version 3.6.1 under development (2024-12-07)
tutorial-ibvs-4pts-ogre.cpp
#include <visp3/core/vpConfig.h>
#ifdef VISP_HAVE_MODULE_AR
#include <visp3/ar/vpAROgre.h>
#endif
#include <visp3/robot/vpSimulatorCamera.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/vs/vpServo.h>
int main()
{
#if defined(ENABLE_VISP_NAMESPACE)
using namespace VISP_NAMESPACE_NAME;
#endif
try {
vpHomogeneousMatrix cdMo(0, 0, 0.75, 0, 0, 0);
vpHomogeneousMatrix cMo(0.15, -0.1, 1., vpMath::rad(10), vpMath::rad(-10), vpMath::rad(50));
// Define the target as 4 points
vpPoint point[4];
point[0].setWorldCoordinates(-0.1, -0.1, 0);
point[1].setWorldCoordinates(0.1, -0.1, 0);
point[2].setWorldCoordinates(0.1, 0.1, 0);
point[3].setWorldCoordinates(-0.1, 0.1, 0);
#if defined(VISP_HAVE_OGRE)
// Color image used as background texture.
vpImage<unsigned char> background(480, 640, 255);
// Parameters of our camera
vpCameraParameters cam(840, 840, background.getWidth() / 2, background.getHeight() / 2);
// Our object
// A simulator with the camera parameters defined above,
// and the background image size
vpAROgre ogre;
ogre.setShowConfigDialog(false);
ogre.addResource("./"); // Add the path to the Sphere.mesh resource
ogre.init(background, false, true);
// Create the scene that contains 4 spheres
// Sphere.mesh contains a sphere with 1 meter radius
std::vector<std::string> name(4);
for (unsigned int i = 0; i < 4; i++) {
std::ostringstream s;
s << "Sphere" << i;
name[i] = s.str();
ogre.load(name[i], "Sphere.mesh");
ogre.setScale(name[i], 0.02f, 0.02f,
0.02f); // Rescale the sphere to 2 cm radius
// Set the position of each sphere in the object frame
ogre.setPosition(name[i], vpTranslationVector(point[i].get_oX(), point[i].get_oY(), point[i].get_oZ()));
}
// Add an optional point light source
Ogre::Light *light = ogre.getSceneManager()->createLight();
light->setDiffuseColour(1, 1, 1); // scaled RGB values
light->setSpecularColour(1, 1, 1); // scaled RGB values
light->setPosition((Ogre::Real)cdMo[0][3], (Ogre::Real)cdMo[1][3], (Ogre::Real)(-cdMo[2][3]));
light->setType(Ogre::Light::LT_POINT);
#endif
vpServo task;
task.setLambda(0.5);
vpFeaturePoint p[4], pd[4];
for (int i = 0; i < 4; i++) {
point[i].track(cdMo);
vpFeatureBuilder::create(pd[i], point[i]);
point[i].track(cMo);
vpFeatureBuilder::create(p[i], point[i]);
task.addFeature(p[i], pd[i]);
}
robot.setSamplingTime(0.040);
robot.getPosition(wMc);
wMo = wMc * cMo;
for (unsigned int iter = 0; iter < 150; iter++) {
robot.getPosition(wMc);
cMo = wMc.inverse() * wMo;
for (int i = 0; i < 4; i++) {
point[i].track(cMo);
vpFeatureBuilder::create(p[i], point[i]);
}
#if defined(VISP_HAVE_OGRE)
// Update the scene from the new camera position
ogre.display(background, cMo);
#endif
vpTime::wait(robot.getSamplingTime() * 1000);
}
}
catch (const vpException &e) {
std::cout << "Catch an exception: " << e << std::endl;
}
catch (...) {
std::cout << "Catch an exception " << std::endl;
}
}
Implementation of an augmented reality viewer using Ogre3D 3rd party.
Definition: vpAROgre.h:92
void setCameraParameters(const vpCameraParameters &cameraP)
Definition: vpAROgre.cpp:659
void setShowConfigDialog(bool showConfigDialog)
Definition: vpAROgre.h:254
void addResource(const std::string &resourceLocation)
Definition: vpAROgre.h:122
Ogre::SceneManager * getSceneManager()
Definition: vpAROgre.h:159
virtual void init(vpImage< unsigned char > &I, bool bufferedKeys=false, bool hidden=false)
Definition: vpAROgre.cpp:110
virtual void display(const vpImage< unsigned char > &I, const vpHomogeneousMatrix &cMw)
Definition: vpAROgre.cpp:623
void load(const std::string &entityName, const std::string &model)
Definition: vpAROgre.cpp:666
void setPosition(const std::string &sceneName, const vpTranslationVector &wTo)
Definition: vpAROgre.cpp:679
void setScale(const std::string &sceneName, float factorx, float factory, float factorz)
Definition: vpAROgre.cpp:766
Generic class defining intrinsic camera parameters.
Implementation of column vector and the associated operations.
Definition: vpColVector.h:191
error that can be emitted by ViSP classes.
Definition: vpException.h:60
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpImagePoint &t)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
void track(const vpHomogeneousMatrix &cMo)
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
unsigned int getWidth() const
Definition: vpImage.h:242
unsigned int getHeight() const
Definition: vpImage.h:181
static double rad(double deg)
Definition: vpMath.h:129
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:79
void setWorldCoordinates(double oX, double oY, double oZ)
Definition: vpPoint.cpp:113
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) VP_OVERRIDE
@ CAMERA_FRAME
Definition: vpRobot.h:84
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:380
@ EYEINHAND_CAMERA
Definition: vpServo.h:161
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:331
void setLambda(double c)
Definition: vpServo.h:986
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:134
vpColVector computeControlLaw()
Definition: vpServo.cpp:705
@ CURRENT
Definition: vpServo.h:202
Class that defines the simplest robot: a free flying camera.
Class that consider the case of a translation vector.
VISP_EXPORT int wait(double t0, double t)