Visual Servoing Platform  version 3.6.1 under development (2024-10-02)
testQuaternion.cpp

Test quaternion interpolation.

/*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2024 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Test quaternion interpolation.
*/
#include <visp3/core/vpConfig.h>
#ifdef VISP_HAVE_CATCH2
#include <visp3/core/vpQuaternionVector.h>
#define CATCH_CONFIG_RUNNER
#include <catch.hpp>
#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif
TEST_CASE("Quaternion interpolation", "[quaternion]")
{
const double angle0 = vpMath::rad(-37.14);
const double angle1 = vpMath::rad(57.96);
vpColVector axis({ 1.2, 6.4, -3.7 });
axis.normalize();
const vpThetaUVector tu0(angle0 * axis);
const vpThetaUVector tu1(angle1 * axis);
const vpQuaternionVector q0(tu0);
const vpQuaternionVector q1(tu1);
const double t = 0.5;
const double ref_angle_middle = t * (angle0 + angle1);
const double margin = 1e-3;
const double marginLerp = 1e-1;
// From:
// https://github.com/google/mathfu/blob/a75f852f2d76f6f14d5697e0d09ce509a2e3bfc6/unit_tests/quaternion_test/quaternion_test.cpp#L319-L329
// This will verify that interpolating two quaternions corresponds to interpolating the angle.
SECTION("LERP")
{
CHECK(vpThetaUVector(qLerp).getTheta() == Approx(ref_angle_middle).margin(marginLerp));
}
SECTION("NLERP")
{
CHECK(vpThetaUVector(qNlerp).getTheta() == Approx(ref_angle_middle).margin(margin));
}
SECTION("SERP")
{
CHECK(vpThetaUVector(qSlerp).getTheta() == Approx(ref_angle_middle).margin(margin));
}
}
TEST_CASE("Quaternion operators", "[quaternion]")
{
SECTION("Addition and subtraction")
{
const vpQuaternionVector q1(2.1, -1, -3.7, 1.5);
const vpQuaternionVector q2(0.5, 1.4, 0.7, 2.5);
const vpQuaternionVector q3 = q1 + q2;
const double margin = std::numeric_limits<double>::epsilon();
std::cout << "q3=" << q3 << std::endl;
CHECK(q3.x() == Approx(2.6).margin(margin));
CHECK(q3.y() == Approx(0.4).margin(margin));
CHECK(q3.z() == Approx(-3.0).margin(margin));
CHECK(q3.w() == Approx(4.0).margin(margin));
// Test subtraction of two quaternions
const vpQuaternionVector q4 = q3 - q1;
std::cout << "q4=" << q4 << std::endl;
CHECK(q4.x() == Approx(q2.x()).margin(margin));
CHECK(q4.y() == Approx(q2.y()).margin(margin));
CHECK(q4.z() == Approx(q2.z()).margin(margin));
CHECK(q4.w() == Approx(q2.w()).margin(margin));
}
SECTION("Multiplication")
{
const vpQuaternionVector q1(3.0, 4.0, 3.0, -sin(M_PI));
const vpQuaternionVector q2(3.9, -1.0, -3.0, 4.0);
const vpQuaternionVector q3 = q1 * q2;
const double margin = std::numeric_limits<double>::epsilon() * 1e4;
CHECK(q3.x() == Approx(3.0).margin(margin));
CHECK(q3.y() == Approx(36.7).margin(margin));
CHECK(q3.z() == Approx(-6.6).margin(margin));
CHECK(q3.w() == Approx(1.3).margin(margin));
}
SECTION("Conjugate")
{
const vpQuaternionVector q1(3.0, 36.7, -6.6, 1.3);
const vpQuaternionVector q1_conj = q1.conjugate();
const double margin = std::numeric_limits<double>::epsilon();
CHECK(q1_conj.x() == Approx(-q1.x()).margin(margin));
CHECK(q1_conj.y() == Approx(-q1.y()).margin(margin));
CHECK(q1_conj.z() == Approx(-q1.z()).margin(margin));
CHECK(q1_conj.w() == Approx(q1.w()).margin(margin));
}
SECTION("Inverse")
{
const vpQuaternionVector q1(3.0, 36.7, -6.6, 1.3);
const vpQuaternionVector q1_inv = q1.inverse();
const double margin = 1e-6;
CHECK(q1_inv.x() == Approx(-0.00214111).margin(margin));
CHECK(q1_inv.y() == Approx(-0.026193).margin(margin));
CHECK(q1_inv.z() == Approx(0.00471045).margin(margin));
CHECK(q1_inv.w() == Approx(0.000927816).margin(margin));
}
SECTION("Norm")
{
const vpQuaternionVector q1(3.0, 36.7, -6.6, 1.3);
const double norm = q1.magnitude();
CHECK(norm == Approx(37.4318).margin(1e-4));
}
SECTION("Normalization")
{
vpQuaternionVector q1(3.0, 36.7, -6.6, 1.3);
q1.normalize();
const double margin = 1e-6;
const double norm = q1.magnitude();
CHECK(norm == Approx(1.0).margin(1e-4));
CHECK(q1.x() == Approx(0.0801457).margin(margin));
CHECK(q1.y() == Approx(0.98045).margin(margin));
CHECK(q1.z() == Approx(-0.176321).margin(margin));
CHECK(q1.w() == Approx(0.0347298).margin(margin));
}
SECTION("Copy constructor")
{
vpQuaternionVector q_copy1 = vpQuaternionVector(0, 0, 1, 1);
std::cout << "q_copy1=" << q_copy1 << std::endl;
const vpQuaternionVector q_copy2 = q_copy1;
CHECK_FALSE((!vpMath::equal(q_copy2.x(), q_copy1.x()) || !vpMath::equal(q_copy2.y(), q_copy1.y()) ||
!vpMath::equal(q_copy2.z(), q_copy1.z()) || !vpMath::equal(q_copy2.w(), q_copy1.w())));
// compare data pointers: verify that they're not the same
CHECK(q_copy2.data != q_copy1.data);
q_copy1.set(1, 0, 1, 10);
CHECK((vpMath::equal(q_copy2.x(), q_copy1.x()) || vpMath::equal(q_copy2.y(), q_copy1.y()) ||
vpMath::equal(q_copy2.z(), q_copy1.z()) || vpMath::equal(q_copy2.w(), q_copy1.w())));
std::cout << "q_copy1 after set = " << q_copy1 << std::endl;
std::cout << "q_copy2=" << q_copy2 << std::endl;
}
SECTION("operator=")
{
const vpQuaternionVector q1 = vpQuaternionVector(0, 0, 1, 1);
vpQuaternionVector q_same(10, 10, 10, 10);
q_same = q1;
CHECK_FALSE((!vpMath::equal(q_same.x(), q1.x()) || !vpMath::equal(q_same.y(), q1.y()) ||
!vpMath::equal(q_same.z(), q1.z()) || !vpMath::equal(q_same.w(), q1.w())));
// compare data pointers: verify that they're not the same
CHECK(q_same.data != q1.data);
}
}
int main(int argc, char *argv[])
{
Catch::Session session; // There must be exactly one instance
// Let Catch (using Clara) parse the command line
session.applyCommandLine(argc, argv);
int numFailed = session.run();
// numFailed is clamped to 255 as some unices only use the lower 8 bits.
// This clamping has already been applied, so just return it here
// You can also do any post run clean-up here
return numFailed;
}
#else
#include <iostream>
int main() { return EXIT_SUCCESS; }
#endif
Type * data
Address of the first element of the data array.
Definition: vpArray2D.h:148
Implementation of column vector and the associated operations.
Definition: vpColVector.h:191
vpColVector & normalize()
static double rad(double deg)
Definition: vpMath.h:129
static bool equal(double x, double y, double threshold=0.001)
Definition: vpMath.h:459
Implementation of a rotation vector as quaternion angle minimal representation.
const double & z() const
Returns the z-component of the quaternion.
vpQuaternionVector conjugate() const
vpQuaternionVector inverse() const
void set(double x, double y, double z, double w)
static vpQuaternionVector slerp(const vpQuaternionVector &q0, const vpQuaternionVector &q1, double t)
static vpQuaternionVector nlerp(const vpQuaternionVector &q0, const vpQuaternionVector &q1, double t)
const double & x() const
Returns the x-component of the quaternion.
const double & y() const
Returns the y-component of the quaternion.
const double & w() const
Returns the w-component of the quaternion.
static vpQuaternionVector lerp(const vpQuaternionVector &q0, const vpQuaternionVector &q1, double t)
Implementation of a rotation vector as axis-angle minimal representation.