Visual Servoing Platform  version 3.6.1 under development (2024-05-09)
simulateCircle2DCamVelocity.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See https://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * Simulation of a visual servoing with visualization.
33  *
34 *****************************************************************************/
35 
48 #include <visp3/core/vpConfig.h>
49 #include <visp3/core/vpDebug.h>
50 
51 #ifdef VISP_HAVE_COIN3D_AND_GUI
52 #include <visp3/ar/vpSimulator.h>
53 #include <visp3/core/vpCameraParameters.h>
54 #include <visp3/core/vpCircle.h>
55 #include <visp3/core/vpHomogeneousMatrix.h>
56 #include <visp3/core/vpImage.h>
57 #include <visp3/core/vpIoTools.h>
58 #include <visp3/core/vpMath.h>
59 #include <visp3/core/vpTime.h>
60 #include <visp3/io/vpParseArgv.h>
61 #include <visp3/robot/vpSimulatorCamera.h>
62 #include <visp3/visual_features/vpFeatureBuilder.h>
63 #include <visp3/visual_features/vpFeatureEllipse.h>
64 #include <visp3/vs/vpServo.h>
65 
66 #define GETOPTARGS "cdi:h"
67 #define SAVE 0
68 
78 void usage(const char *name, const char *badparam, std::string ipath)
79 {
80  fprintf(stdout, "\n\
81 Simulation Servo Circle\n\
82  \n\
83 SYNOPSIS\n\
84  %s [-i <input image path>] [-d] [-h]\n",
85  name);
86 
87  fprintf(stdout, "\n\
88 OPTIONS: Default\n\
89  -i <input image path> %s\n\
90  Set image input path.\n\
91  From this path read \"iv/4points.iv\"\n\
92  cad model.\n\
93  Setting the VISP_INPUT_IMAGE_PATH environment\n\
94  variable produces the same behaviour than using\n\
95  this option.\n\
96  \n\
97  -d \n\
98  Disable the image display. This can be useful \n\
99  for automatic tests using crontab under Unix or \n\
100  using the task manager under Windows.\n\
101  \n\
102  -h\n\
103  Print the help.\n\n",
104  ipath.c_str());
105 
106  if (badparam)
107  fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
108 }
109 
125 bool getOptions(int argc, const char **argv, std::string &ipath, bool &display)
126 {
127  const char *optarg;
128  int c;
129  while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg)) > 1) {
130 
131  switch (c) {
132  case 'i':
133  ipath = optarg;
134  break;
135  case 'd':
136  display = false;
137  break;
138  case 'h':
139  usage(argv[0], nullptr, ipath);
140  return false;
141  break;
142 
143  default:
144  usage(argv[0], optarg, ipath);
145  return false;
146  break;
147  }
148  }
149 
150  if ((c == 1) || (c == -1)) {
151  // standalone param or error
152  usage(argv[0], nullptr, ipath);
153  std::cerr << "ERROR: " << std::endl;
154  std::cerr << " Bad argument " << optarg << std::endl << std::endl;
155  return false;
156  }
157 
158  return true;
159 }
160 
161 static void *mainLoop(void *_simu)
162 {
163  vpSimulator *simu = static_cast<vpSimulator *>(_simu);
164  simu->initMainApplication();
165 
166  vpPoseVector vcMo;
167 
168  vcMo[0] = 0.3;
169  vcMo[1] = 0.2;
170  vcMo[2] = 3;
171  vcMo[3] = 0;
172  vcMo[4] = vpMath::rad(45);
173  vcMo[5] = vpMath::rad(40);
174  vpHomogeneousMatrix cMo(vcMo);
175  vpHomogeneousMatrix wMo; // Set to identity
176  vpHomogeneousMatrix wMc; // Robot (=camera) location in the world frame
177 
178  vpHomogeneousMatrix cMod;
179  cMod[0][3] = 0;
180  cMod[1][3] = 0;
181  cMod[2][3] = 1;
182 
183  int it = 0;
184  unsigned int pos = 2;
185  while (pos != 0) {
186  vpServo task;
187  vpSimulatorCamera robot;
188 
189  float sampling_time = 0.040f; // Sampling period in second
190  robot.setSamplingTime(sampling_time);
191  robot.setMaxTranslationVelocity(4.);
192 
193  // Sets the initial camera location
194  wMc = wMo * cMo.inverse();
195  robot.setPosition(wMc);
196  simu->setCameraPosition(cMo);
197 
198  if (pos == 1)
199  cMod[2][3] = 0.32;
200 
201  // Sets the circle coordinates in the world frame
202  vpCircle circle;
203  circle.setWorldCoordinates(0, 0, 1, 0, 0, 0, 0.1);
204 
205  // Sets the desired position of the visual feature
206  vpFeatureEllipse pd;
207  circle.track(cMod);
208  vpFeatureBuilder::create(pd, circle);
209 
210  // Project : computes the circle coordinates in the camera frame and its
211  // 2D coordinates Sets the current position of the visual feature
213  circle.track(cMo);
214  vpFeatureBuilder::create(p, circle);
215 
216  // Define the task
217  // We want an eye-in-hand control law
218  // Robot is controlled in the camera frame
221 
222  // We want to see a circle on a circle
223  std::cout << std::endl;
224  task.addFeature(p, pd);
225 
226  // Set the gain
227  task.setLambda(1.0);
228 
229  // Display task information
230  task.print();
231 
232  vpTime::wait(1000); // Sleep 1s
233 
234  unsigned int iter = 0;
235  // Visual servoing loop
236  unsigned int itermax;
237  if (pos == 2)
238  itermax = 75;
239  else
240  itermax = 100;
241  while (iter++ < itermax) {
242  double t = vpTime::measureTimeMs();
243 
244  if (iter == 1)
245  std::cout << "get the robot position" << std::endl;
246  wMc = robot.getPosition();
247  if (iter == 1)
248  std::cout << "new circle position" << std::endl;
249  // retrieve x,y and Z of the vpCircle structure
250 
251  cMo = wMc.inverse() * wMo;
252  circle.track(cMo);
253  vpFeatureBuilder::create(p, circle);
254 
255  if (iter == 1)
256  std::cout << "compute the control law" << std::endl;
257  vpColVector v = task.computeControlLaw();
258  if (iter == 1) {
259  std::cout << "Task rank: " << task.getTaskRank() << std::endl;
260  std::cout << "send the camera velocity to the controller" << std::endl;
261  }
263 
264  simu->setCameraPosition(cMo);
265 
266  if (SAVE == 1) {
267  char name[FILENAME_MAX];
268  snprintf(name, FILENAME_MAX, "/tmp/image.%04d.external.png", it);
269  std::cout << "Save " << name << std::endl;
270  simu->write(name);
271  snprintf(name, FILENAME_MAX, "/tmp/image.%04u.internal.png", iter);
272  std::cout << "Save " << name << std::endl;
273  simu->write(name);
274  it++;
275  }
276  // std::cout << "\t\t || s - s* || "
277  // std::cout << ( task.getError() ).sumSquare() <<std::endl ; ;
278  vpTime::wait(t, sampling_time * 1000); // Wait 40 ms
279  }
280  pos--;
281  }
282 
283  simu->closeMainApplication();
284 
285  void *a = nullptr;
286  return a;
287 }
288 
289 int main(int argc, const char **argv)
290 {
291  try {
292  std::string env_ipath;
293  std::string opt_ipath;
294  std::string ipath;
295  std::string filename;
296  bool opt_display = true;
297 
298  // Get the visp-images-data package path or VISP_INPUT_IMAGE_PATH
299  // environment variable value
300  env_ipath = vpIoTools::getViSPImagesDataPath();
301 
302  // Set the default input path
303  if (!env_ipath.empty())
304  ipath = env_ipath;
305 
306  // Read the command line options
307  if (getOptions(argc, argv, opt_ipath, opt_display) == false) {
308  return EXIT_FAILURE;
309  }
310 
311  // Get the option values
312  if (!opt_ipath.empty())
313  ipath = opt_ipath;
314 
315  // Compare ipath and env_ipath. If they differ, we take into account
316  // the input path coming from the command line option
317  if (!opt_ipath.empty() && !env_ipath.empty()) {
318  if (ipath != env_ipath) {
319  std::cout << std::endl << "WARNING: " << std::endl;
320  std::cout << " Since -i <visp image path=" << ipath << "> "
321  << " is different from VISP_INPUT_IMAGE_PATH=" << env_ipath << std::endl
322  << " we skip the environment variable." << std::endl;
323  }
324  }
325 
326  // Test if an input path is set
327  if (opt_ipath.empty() && env_ipath.empty()) {
328  usage(argv[0], nullptr, ipath);
329  std::cerr << std::endl << "ERROR:" << std::endl;
330  std::cerr << " Use -i <visp image path> option or set VISP_INPUT_IMAGE_PATH " << std::endl
331  << " environment variable to specify the location of the " << std::endl
332  << " image path where test images are located." << std::endl
333  << std::endl;
334  return EXIT_FAILURE;
335  }
336 
337  vpCameraParameters cam;
339  fMo[2][3] = 0;
340 
341  if (opt_display) {
342 
343  vpSimulator simu;
344  simu.initInternalViewer(300, 300);
345  simu.initExternalViewer(300, 300);
346 
347  vpTime::wait(1000);
348  simu.setZoomFactor(1.0f);
349  simu.addAbsoluteFrame();
350 
351  // Load the cad model
352  filename = vpIoTools::createFilePath(ipath, "iv/circle.iv");
353  simu.load(filename.c_str(), fMo);
354 
355  simu.setInternalCameraParameters(cam);
356 
357  simu.initApplication(&mainLoop);
358  simu.mainLoop();
359  }
360  return EXIT_SUCCESS;
361  }
362  catch (const vpException &e) {
363  std::cout << "Catch an exception: " << e << std::endl;
364  return EXIT_FAILURE;
365  }
366 }
367 
368 #else
369 int main()
370 {
371  std::cout << "You do not have Coin3D and SoQT or SoWin or SoXt functionalities enabled..." << std::endl;
372  std::cout << "Tip:" << std::endl;
373  std::cout
374  << "- Install Coin3D and SoQT or SoWin or SoXt, configure ViSP again using cmake and build again this example"
375  << std::endl;
376  return EXIT_SUCCESS;
377 }
378 #endif
Generic class defining intrinsic camera parameters.
Class that defines a 3D circle in the object frame and allows forward projection of a 3D circle in th...
Definition: vpCircle.h:86
void setWorldCoordinates(const vpColVector &oP) vp_override
Definition: vpCircle.cpp:57
Implementation of column vector and the associated operations.
Definition: vpColVector.h:163
error that can be emitted by ViSP classes.
Definition: vpException.h:59
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
Class that defines 2D ellipse visual feature.
void track(const vpHomogeneousMatrix &cMo)
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
static std::string getViSPImagesDataPath()
Definition: vpIoTools.cpp:1832
static std::string createFilePath(const std::string &parent, const std::string &child)
Definition: vpIoTools.cpp:2195
static double rad(double deg)
Definition: vpMath.h:127
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:69
Implementation of a pose vector and operations on poses.
Definition: vpPoseVector.h:189
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) vp_override
@ CAMERA_FRAME
Definition: vpRobot.h:82
void setMaxTranslationVelocity(double maxVt)
Definition: vpRobot.cpp:236
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:378
@ EYEINHAND_CAMERA
Definition: vpServo.h:155
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:329
unsigned int getTaskRank() const
Definition: vpServo.h:600
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:169
void setLambda(double c)
Definition: vpServo.h:976
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:132
vpColVector computeControlLaw()
Definition: vpServo.cpp:703
@ CURRENT
Definition: vpServo.h:196
Class that defines the simplest robot: a free flying camera.
Implementation of a simulator based on Coin3d (www.coin3d.org).
Definition: vpSimulator.h:99
void load(const char *file_name)
load an iv file
void setInternalCameraParameters(vpCameraParameters &cam)
set internal camera parameters
virtual void mainLoop()
activate the mainloop
void initMainApplication()
perform some initialization in the main program thread
void initApplication(void *(*start_routine)(void *))
begin the main program
void setZoomFactor(float zoom)
set the size of the camera/frame
void setCameraPosition(vpHomogeneousMatrix &cMf)
set the camera position (from an homogeneous matrix)
void initExternalViewer(unsigned int nlig, unsigned int ncol)
initialize the external view
void write(const char *fileName)
virtual void initInternalViewer(unsigned int nlig, unsigned int ncol)
initialize the camera view
void closeMainApplication()
void addAbsoluteFrame(float zoom=1)
Add the representation of the absolute frame.
void display(vpImage< unsigned char > &I, const std::string &title)
Display a gray-scale image.
VISP_EXPORT int wait(double t0, double t)
VISP_EXPORT double measureTimeMs()