Visual Servoing Platform  version 3.6.1 under development (2025-01-20)
servoAfma6SquareLines2DCamVelocity.cpp

Example of eye-in-hand control law. We control here a real robot, the Afma6 robot (cartesian robot, with 6 degrees of freedom). The velocity is computed in the camera frame. Visual features are the four lines of a square.

/*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2024 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* tests the control law
* eye-in-hand control
* velocity computed in the camera frame
*/
#include <iostream>
#include <visp3/core/vpConfig.h>
#if defined(VISP_HAVE_REALSENSE2) && defined(VISP_HAVE_DISPLAY) && defined(VISP_HAVE_AFMA6)
#include <visp3/core/vpImage.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpLine.h>
#include <visp3/core/vpMath.h>
#include <visp3/gui/vpDisplayFactory.h>
#include <visp3/robot/vpRobotAfma6.h>
#include <visp3/sensor/vpRealSense2.h>
#include <visp3/me/vpMeLine.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeatureLine.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>
int main()
{
#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif
try {
rs2::config config;
unsigned int width = 640, height = 480, fps = 60;
config.enable_stream(RS2_STREAM_COLOR, width, height, RS2_FORMAT_RGBA8, fps);
config.enable_stream(RS2_STREAM_DEPTH, width, height, RS2_FORMAT_Z16, fps);
config.enable_stream(RS2_STREAM_INFRARED, width, height, RS2_FORMAT_Y8, fps);
rs.open(config);
// Warm up camera
for (size_t i = 0; i < 10; ++i) {
rs.acquire(I);
}
std::shared_ptr<vpDisplay> d = vpDisplayFactory::createDisplay(I, 10, 10, "Current image");
std::cout << "-------------------------------------------------------" << std::endl;
std::cout << " Test program for vpServo " << std::endl;
std::cout << " Eye-in-hand task control, velocity computed in the camera frame" << std::endl;
std::cout << " Simulation " << std::endl;
std::cout << " task : servo a line " << std::endl;
std::cout << "-------------------------------------------------------" << std::endl;
int nb_lines = 4;
std::vector<vpMeLine> line(nb_lines);
vpMe me;
me.setRange(10);
me.setThreshold(20);
me.setSampleStep(10);
// Initialize the tracking. Define the four lines to track.
for (int i = 0; i < nb_lines; ++i) {
line[i].setDisplay(vpMeSite::RANGE_RESULT);
line[i].setMe(&me);
line[i].initTracking(I);
line[i].track(I);
}
vpRobotAfma6 robot;
// Get camera intrinsics
robot.getCameraParameters(cam, I);
// Sets the current position of the visual feature
std::vector<vpFeatureLine> s_line(nb_lines);
for (int i = 0; i < nb_lines; ++i)
vpFeatureBuilder::create(s_line[i], cam, line[i]);
// Sets the desired position of the visual feature
std::vector<vpLine> line_d(nb_lines);
line_d[0].setWorldCoordinates(1, 0, 0, 0.05, 0, 0, 1, 0);
line_d[1].setWorldCoordinates(0, 1, 0, 0.05, 0, 0, 1, 0);
line_d[2].setWorldCoordinates(1, 0, 0, -0.05, 0, 0, 1, 0);
line_d[3].setWorldCoordinates(0, 1, 0, -0.05, 0, 0, 1, 0);
vpHomogeneousMatrix c_M_o(0, 0, 0.5, 0, 0, vpMath::rad(0));
line_d[0].project(c_M_o);
line_d[1].project(c_M_o);
line_d[2].project(c_M_o);
line_d[3].project(c_M_o);
// Those lines are needed to keep the conventions define in vpMeLine
// (Those in vpLine are less restrictive) Another way to have the
// coordinates of the desired features is to learn them before executing
// the program.
line_d[0].setRho(-fabs(line_d[0].getRho()));
line_d[0].setTheta(0);
line_d[1].setRho(-fabs(line_d[1].getRho()));
line_d[1].setTheta(M_PI / 2);
line_d[2].setRho(-fabs(line_d[2].getRho()));
line_d[2].setTheta(M_PI);
line_d[3].setRho(-fabs(line_d[3].getRho()));
line_d[3].setTheta(-M_PI / 2);
std::vector<vpFeatureLine> s_line_d(nb_lines);
vpFeatureBuilder::create(s_line_d[0], line_d[0]);
vpFeatureBuilder::create(s_line_d[1], line_d[1]);
vpFeatureBuilder::create(s_line_d[2], line_d[2]);
vpFeatureBuilder::create(s_line_d[3], line_d[3]);
// Define the task
// - we want an eye-in-hand control law
// - robot is controlled in the camera frame
vpServo task;
// - we want to see 4 lines on 4 lines
for (int i = 0; i < nb_lines; ++i) {
task.addFeature(s_line[i], s_line_d[i]);
}
// - set the gain
task.setLambda(0.2);
// - display task information
task.print();
bool quit = false;
while (!quit) {
rs.acquire(I);
// Track the lines and update the features
for (int i = 0; i < nb_lines; ++i) {
line[i].track(I);
line[i].display(I, vpColor::red);
vpFeatureBuilder::create(s_line[i], cam, line[i]);
s_line[i].display(cam, I, vpColor::red);
s_line_d[i].display(cam, I, vpColor::green);
}
vpDisplay::displayText(I, 20, 20, "Click to quit...", vpColor::red);
if (vpDisplay::getClick(I, false)) {
quit = true;
}
}
// Display task information
task.print();
return EXIT_SUCCESS;
}
catch (const vpException &e) {
std::cout << "Visual servo failed with exception: " << e << std::endl;
return EXIT_FAILURE;
}
}
#else
int main()
{
std::cout << "You do not have an afma6 robot connected to your computer..." << std::endl;
return EXIT_SUCCESS;
}
#endif
@ TOOL_INTEL_D435_CAMERA
Definition: vpAfma6.h:131
Generic class defining intrinsic camera parameters.
@ perspectiveProjWithoutDistortion
Perspective projection without distortion model.
Implementation of column vector and the associated operations.
Definition: vpColVector.h:191
static const vpColor red
Definition: vpColor.h:198
static const vpColor green
Definition: vpColor.h:201
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
static void display(const vpImage< unsigned char > &I)
static void flush(const vpImage< unsigned char > &I)
static void displayText(const vpImage< unsigned char > &I, const vpImagePoint &ip, const std::string &s, const vpColor &color)
error that can be emitted by ViSP classes.
Definition: vpException.h:60
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpImagePoint &t)
Implementation of an homogeneous matrix and operations on such kind of matrices.
static double rad(double deg)
Definition: vpMath.h:129
@ RANGE_RESULT
Definition: vpMeSite.h:78
Definition: vpMe.h:134
void setPointsToTrack(const int &points_to_track)
Definition: vpMe.h:408
void setRange(const unsigned int &range)
Definition: vpMe.h:415
void setLikelihoodThresholdType(const vpLikelihoodThresholdType likelihood_threshold_type)
Definition: vpMe.h:505
void setThreshold(const double &threshold)
Definition: vpMe.h:466
void setSampleStep(const double &sample_step)
Definition: vpMe.h:422
@ NORMALIZED_THRESHOLD
Definition: vpMe.h:145
void acquire(vpImage< unsigned char > &grey, double *ts=nullptr)
bool open(const rs2::config &cfg=rs2::config())
Control of Irisa's gantry robot named Afma6.
Definition: vpRobotAfma6.h:212
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) VP_OVERRIDE
@ CAMERA_FRAME
Definition: vpRobot.h:84
@ STATE_VELOCITY_CONTROL
Initialize the velocity controller.
Definition: vpRobot.h:67
virtual vpRobotStateType setRobotState(const vpRobot::vpRobotStateType newState)
Definition: vpRobot.cpp:202
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:380
@ EYEINHAND_CAMERA
Definition: vpServo.h:161
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:331
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:171
void setLambda(double c)
Definition: vpServo.h:991
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:134
@ PSEUDO_INVERSE
Definition: vpServo.h:235
vpColVector computeControlLaw()
Definition: vpServo.cpp:705
@ DESIRED
Definition: vpServo.h:208
std::shared_ptr< vpDisplay > createDisplay()
Return a smart pointer vpDisplay specialization if a GUI library is available or nullptr otherwise.