Visual Servoing Platform  version 3.4.0
vpDot2.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See http://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * Track a white dot.
33  *
34  * Authors:
35  * Fabien Spindler
36  * Anthony Saunier
37  *
38  *****************************************************************************/
39 
45 //#define DEBUG
46 
47 #include <visp3/core/vpDisplay.h>
48 
49 // exception handling
50 #include <visp3/core/vpIoTools.h>
51 #include <visp3/core/vpMath.h>
52 #include <visp3/core/vpTrackingException.h>
53 
54 #include <cmath> // std::fabs
55 #include <iostream>
56 #include <limits> // numeric_limits
57 #include <math.h>
58 #include <visp3/blob/vpDot2.h>
59 
60 /******************************************************************************
61  *
62  * CONSTRUCTORS AND DESTRUCTORS
63  *
64  *****************************************************************************/
70 void vpDot2::init()
71 {
72  cog.set_u(0);
73  cog.set_v(0);
74 
75  width = 0;
76  height = 0;
77  surface = 0;
78  mean_gray_level = 0;
79  gray_level_min = 128;
80  gray_level_max = 255;
81  grayLevelPrecision = 0.80;
82  gamma = 1.5;
83 
84  sizePrecision = 0.65;
85  ellipsoidShapePrecision = 0.65;
86  maxSizeSearchDistancePrecision = 0.65;
88  m00 = m11 = m02 = m20 = m10 = m01 = 0.;
89  mu11 = mu02 = mu20 = 0.;
90 
91  bbox_u_min = bbox_u_max = bbox_v_min = bbox_v_max = 0;
92 
93  firstBorder_u = 0;
94  firstBorder_v = 0;
95 
96  compute_moment = false;
97  graphics = false;
98  thickness = 1;
99 }
100 
105  : m00(0.), m10(0.), m01(0.), m11(0.), m20(0.), m02(0.), mu11(0.), mu20(0.), mu02(0.), cog(), width(0), height(0),
106  surface(0), gray_level_min(128), gray_level_max(255), mean_gray_level(0), grayLevelPrecision(0.8), gamma(1.5),
107  sizePrecision(0.65), ellipsoidShapePrecision(0.65), maxSizeSearchDistancePrecision(0.65),
108  allowedBadPointsPercentage_(0.), area(), direction_list(), ip_edges_list(), compute_moment(false), graphics(false),
109  thickness(1), bbox_u_min(0), bbox_u_max(0), bbox_v_min(0), bbox_v_max(0), firstBorder_u(0), firstBorder_v()
110 {
111 }
112 
122  : m00(0.), m10(0.), m01(0.), m11(0.), m20(0.), m02(0.), mu11(0.), mu20(0.), mu02(0.), cog(ip), width(0), height(0),
123  surface(0), gray_level_min(128), gray_level_max(255), mean_gray_level(0), grayLevelPrecision(0.8), gamma(1.5),
124  sizePrecision(0.65), ellipsoidShapePrecision(0.65), maxSizeSearchDistancePrecision(0.65),
125  allowedBadPointsPercentage_(0.), area(), direction_list(), ip_edges_list(), compute_moment(false), graphics(false),
126  thickness(1), bbox_u_min(0), bbox_u_max(0), bbox_v_min(0), bbox_v_max(0), firstBorder_u(0), firstBorder_v()
127 {
128 }
129 
133 vpDot2::vpDot2(const vpDot2 &twinDot)
134  : vpTracker(twinDot), m00(0.), m10(0.), m01(0.), m11(0.), m20(0.), m02(0.), mu11(0.), mu20(0.), mu02(0.), cog(),
135  width(0), height(0), surface(0), gray_level_min(128), gray_level_max(255), mean_gray_level(0),
136  grayLevelPrecision(0.8), gamma(1.5), sizePrecision(0.65), ellipsoidShapePrecision(0.65),
137  maxSizeSearchDistancePrecision(0.65), allowedBadPointsPercentage_(0.), area(), direction_list(), ip_edges_list(),
138  compute_moment(false), graphics(false), thickness(1), bbox_u_min(0), bbox_u_max(0), bbox_v_min(0), bbox_v_max(0),
139  firstBorder_u(0), firstBorder_v()
140 {
141  *this = twinDot;
142 }
143 
148 {
149  cog = twinDot.cog;
150 
151  width = twinDot.width;
152  height = twinDot.height;
153  surface = twinDot.surface;
154  gray_level_min = twinDot.gray_level_min;
155  gray_level_max = twinDot.gray_level_max;
156  mean_gray_level = twinDot.mean_gray_level;
157  grayLevelPrecision = twinDot.grayLevelPrecision;
158  gamma = twinDot.gamma;
159  ;
160  sizePrecision = twinDot.sizePrecision;
161  ellipsoidShapePrecision = twinDot.ellipsoidShapePrecision;
162  maxSizeSearchDistancePrecision = twinDot.maxSizeSearchDistancePrecision;
163  allowedBadPointsPercentage_ = twinDot.allowedBadPointsPercentage_;
164  area = twinDot.area;
165 
166  direction_list = twinDot.direction_list;
167  ip_edges_list = twinDot.ip_edges_list;
168 
169  compute_moment = twinDot.compute_moment;
170  graphics = twinDot.graphics;
171  thickness = twinDot.thickness;
172 
173  bbox_u_min = twinDot.bbox_u_min;
174  bbox_u_max = twinDot.bbox_u_max;
175  bbox_v_min = twinDot.bbox_v_min;
176  bbox_v_max = twinDot.bbox_v_max;
177 
178  firstBorder_u = twinDot.firstBorder_u;
179  firstBorder_v = twinDot.firstBorder_v;
180 
181  m00 = twinDot.m00;
182  m01 = twinDot.m01;
183  m11 = twinDot.m11;
184  m10 = twinDot.m10;
185  m02 = twinDot.m02;
186  m20 = twinDot.m20;
187 
188  mu11 = twinDot.mu11;
189  mu20 = twinDot.mu20;
190  mu02 = twinDot.mu02;
191 
192  return (*this);
193 }
194 
199 
200 /******************************************************************************
201  *
202  * PUBLIC METHODS
203  *****************************************************************************/
204 
212 void vpDot2::display(const vpImage<unsigned char> &I, vpColor color, unsigned int t) const
213 {
214  vpDisplay::displayCross(I, cog, 3 * t + 8, color, t);
215  std::list<vpImagePoint>::const_iterator it;
216 
217  for (it = ip_edges_list.begin(); it != ip_edges_list.end(); ++it) {
218  vpDisplay::displayPoint(I, *it, color);
219  }
220 }
221 
253 void vpDot2::initTracking(const vpImage<unsigned char> &I, unsigned int size)
254 {
255  while (vpDisplay::getClick(I, cog) != true) {}
256 
257  unsigned int i = (unsigned int)cog.get_i();
258  unsigned int j = (unsigned int)cog.get_j();
259 
260  double Ip = pow((double)I[i][j] / 255, 1 / gamma);
261 
262  if (Ip - (1 - grayLevelPrecision) < 0) {
263  gray_level_min = 0;
264  } else {
265  gray_level_min = (unsigned int)(255 * pow(Ip - (1 - grayLevelPrecision), gamma));
266  if (gray_level_min > 255)
267  gray_level_min = 255;
268  }
269  gray_level_max = (unsigned int)(255 * pow(Ip + (1 - grayLevelPrecision), gamma));
270  if (gray_level_max > 255)
271  gray_level_max = 255;
272 
273  setWidth(size);
274  setHeight(size);
275 
276  try {
277  track(I);
278  } catch (const vpException &e) {
279  // vpERROR_TRACE("Error caught") ;
280  throw(e);
281  }
282 }
283 
311 void vpDot2::initTracking(const vpImage<unsigned char> &I, const vpImagePoint &ip, unsigned int size)
312 {
313  cog = ip;
314 
315  unsigned int i = (unsigned int)cog.get_i();
316  unsigned int j = (unsigned int)cog.get_j();
317 
318  double Ip = pow((double)I[i][j] / 255, 1 / gamma);
319 
320  if (Ip - (1 - grayLevelPrecision) < 0) {
321  gray_level_min = 0;
322  } else {
323  gray_level_min = (unsigned int)(255 * pow(Ip - (1 - grayLevelPrecision), gamma));
324  if (gray_level_min > 255)
325  gray_level_min = 255;
326  }
327  gray_level_max = (unsigned int)(255 * pow(Ip + (1 - grayLevelPrecision), gamma));
328  if (gray_level_max > 255)
329  gray_level_max = 255;
330 
331  setWidth(size);
332  setHeight(size);
333 
334  try {
335  track(I);
336  } catch (const vpException &e) {
337  // vpERROR_TRACE("Error caught") ;
338  throw(e);
339  }
340 }
341 
381 void vpDot2::initTracking(const vpImage<unsigned char> &I, const vpImagePoint &ip, unsigned int gray_lvl_min,
382  unsigned int gray_lvl_max, unsigned int size)
383 {
384  cog = ip;
385 
386  this->gray_level_min = gray_lvl_min;
387  this->gray_level_max = gray_lvl_max;
388 
389  setWidth(size);
390  setHeight(size);
391 
392  try {
393  track(I);
394  } catch (const vpException &e) {
395  // vpERROR_TRACE("Error caught") ;
396  throw(e);
397  }
398 }
399 
441 void vpDot2::track(const vpImage<unsigned char> &I, bool canMakeTheWindowGrow)
442 {
443  m00 = m11 = m02 = m20 = m10 = m01 = 0;
444 
445  // First, we will estimate the position of the tracked point
446 
447  // Set the search area to the entire image
448  setArea(I);
449 
450  // create a copy of the dot to search
451  // This copy can be saw as the previous dot used to check if the current one
452  // found with computeParameters() is similar to the previous one (see
453  // isValid() function). If the found dot is not similar (or valid), we use
454  // this copy to set the current found dot to the previous one (see below).
455  vpDot2 wantedDot(*this);
456 
457  // vpDEBUG_TRACE(0, "Previous dot: ");
458  // vpDEBUG_TRACE(0, "u: %f v: %f", get_u(), get_v());
459  // vpDEBUG_TRACE(0, "w: %f h: %f", getWidth(), getHeight());
460  bool found = computeParameters(I, cog.get_u(), cog.get_v());
461 
462  if (found) {
463  // test if the found dot is valid (ie similar to the previous one)
464  found = isValid(I, wantedDot);
465  if (!found) {
466  *this = wantedDot;
467  // std::cout << "The found dot is not valid" << std::endl;
468  }
469  }
470 
471  if (!found) {
472  // vpDEBUG_TRACE(0, "Search the dot in a biggest window around the
473  // last position"); vpDEBUG_TRACE(0, "Bad computed dot: ");
474  // vpDEBUG_TRACE(0, "u: %f v: %f", get_u(), get_v());
475  // vpDEBUG_TRACE(0, "w: %f h: %f", getWidth(), getHeight());
476 
477  // if estimation was wrong (get an error tracking), look for the dot
478  // closest from the estimation,
479  // i.e. search for dots in an a region of interest around the this dot and
480  // get the first element in the area.
481 
482  // first get the size of the search window from the dot size
483  double searchWindowWidth = 0.0, searchWindowHeight = 0.0;
484  // if( getWidth() == 0 || getHeight() == 0 )
485  if (std::fabs(getWidth()) <= std::numeric_limits<double>::epsilon() ||
486  std::fabs(getHeight()) <= std::numeric_limits<double>::epsilon()) {
487  searchWindowWidth = 80.;
488  searchWindowHeight = 80.;
489  } else if (canMakeTheWindowGrow) {
490  searchWindowWidth = getWidth() * 5;
491  searchWindowHeight = getHeight() * 5;
492  } else {
493  searchWindowWidth = getWidth();
494  searchWindowHeight = getHeight();
495  }
496 
497  std::list<vpDot2> candidates;
498  searchDotsInArea(I, (int)(this->cog.get_u() - searchWindowWidth / 2.0),
499  (int)(this->cog.get_v() - searchWindowHeight / 2.0), (unsigned int)searchWindowWidth,
500  (unsigned int)searchWindowHeight, candidates);
501 
502  // if the vector is empty, that mean we didn't find any candidate
503  // in the area, return an error tracking.
504  if (candidates.empty()) {
505  // vpERROR_TRACE("No dot was found") ;
507  }
508 
509  // otherwise we've got our dot, update this dot's parameters
510  vpDot2 movingDot = candidates.front();
511 
512  setCog(movingDot.getCog());
513  setArea(movingDot.getArea());
514  setWidth(movingDot.getWidth());
515  setHeight(movingDot.getHeight());
516 
517  // Update the moments
518  m00 = movingDot.m00;
519  m01 = movingDot.m01;
520  m10 = movingDot.m10;
521  m11 = movingDot.m11;
522  m20 = movingDot.m20;
523  m02 = movingDot.m02;
524 
525  // Update the bounding box
526  bbox_u_min = movingDot.bbox_u_min;
527  bbox_u_max = movingDot.bbox_u_max;
528  bbox_v_min = movingDot.bbox_v_min;
529  bbox_v_max = movingDot.bbox_v_max;
530  }
531  // else {
532  // // test if the found dot is valid,
533  // if( ! isValid( I, wantedDot ) ) {
534  // *this = wantedDot;
535  // vpERROR_TRACE("The found dot is invalid:",
536  // "- could be a problem of size (width or height) or "
537  // " surface (number of pixels) which differ too much "
538  // " to the previous one "
539  // "- or a problem of the shape which is not ellipsoid if "
540  // " use setEllipsoidShapePrecision(double
541  // ellipsoidShapePrecision) "
542  // " which is the default case. "
543  // " To track a non ellipsoid shape use
544  // setEllipsoidShapePrecision(0)") ;
545  // throw(vpTrackingException(vpTrackingException::featureLostError,
546  // "The found dot is invalid")) ;
547  // }
548  // }
549 
550  // if this dot is partially out of the image, return an error tracking.
551  if (!isInImage(I)) {
552  // vpERROR_TRACE("The center of gravity of the dot is not in the image") ;
554  "The center of gravity of the dot is not in the image"));
555  }
556 
557  // Get dots center of gravity
558  // unsigned int u = (unsigned int) this->cog.get_u();
559  // unsigned int v = (unsigned int) this->cog.get_v();
560  // Updates the min and max gray levels for the next iteration
561  // double Ip = pow((double)I[v][u]/255,1/gamma);
562  double Ip = pow(getMeanGrayLevel() / 255, 1 / gamma);
563  // printf("current value of gray level center : %i\n", I[v][u]);
564 
565  // getMeanGrayLevel(I);
566  if (Ip - (1 - grayLevelPrecision) < 0) {
567  gray_level_min = 0;
568  } else {
569  gray_level_min = (unsigned int)(255 * pow(Ip - (1 - grayLevelPrecision), gamma));
570  if (gray_level_min > 255)
571  gray_level_min = 255;
572  }
573  gray_level_max = (unsigned int)(255 * pow(Ip + (1 - grayLevelPrecision), gamma));
574  if (gray_level_max > 255)
575  gray_level_max = 255;
576 
577  // printf("%i %i \n",gray_level_max,gray_level_min);
578  if (graphics) {
579  // display a red cross at the center of gravity's location in the image.
580 
581  vpDisplay::displayCross(I, this->cog, 3 * thickness + 8, vpColor::red, thickness);
582  // vpDisplay::flush(I);
583  }
584 }
585 
608 void vpDot2::track(const vpImage<unsigned char> &I, vpImagePoint &ip, bool canMakeTheWindowGrow)
609 {
610  track(I, canMakeTheWindowGrow);
611 
612  ip = this->cog;
613 }
614 
617 
623 double vpDot2::getWidth() const { return width; }
624 
630 double vpDot2::getHeight() const { return height; }
631 
637 double vpDot2::getArea() const { return fabs(surface); }
638 
644 double vpDot2::getGrayLevelPrecision() const { return grayLevelPrecision; }
645 
651 double vpDot2::getSizePrecision() const { return sizePrecision; }
652 
660 double vpDot2::getEllipsoidShapePrecision() const { return ellipsoidShapePrecision; }
661 
668 double vpDot2::getMaxSizeSearchDistancePrecision() const { return maxSizeSearchDistancePrecision; }
669 
673 double vpDot2::getDistance(const vpDot2 &distantDot) const
674 {
675  vpImagePoint cogDistantDot = distantDot.getCog();
676  double diff_u = this->cog.get_u() - cogDistantDot.get_u();
677  double diff_v = this->cog.get_v() - cogDistantDot.get_v();
678  return sqrt(diff_u * diff_u + diff_v * diff_v);
679 }
680 
682 
692 void vpDot2::setWidth(const double &w) { this->width = w; }
693 
704 void vpDot2::setHeight(const double &h) { this->height = h; }
705 
716 void vpDot2::setArea(const double &a) { this->surface = a; }
717 
735 void vpDot2::setGrayLevelPrecision(const double &precision)
736 {
737  double epsilon = 0.05;
738  if (grayLevelPrecision < epsilon) {
739  this->grayLevelPrecision = epsilon;
740  } else if (grayLevelPrecision > 1) {
741  this->grayLevelPrecision = 1.0;
742  } else {
743  this->grayLevelPrecision = precision;
744  }
745 }
763 void vpDot2::setSizePrecision(const double &precision)
764 {
765  if (sizePrecision < 0) {
766  this->sizePrecision = 0;
767  } else if (sizePrecision > 1) {
768  this->sizePrecision = 1.0;
769  } else {
770  this->sizePrecision = precision;
771  }
772 }
773 
806 void vpDot2::setEllipsoidShapePrecision(const double &precision)
807 {
808 
809  if (ellipsoidShapePrecision < 0) {
810  this->ellipsoidShapePrecision = 0;
811  } else if (ellipsoidShapePrecision > 1) {
812  this->ellipsoidShapePrecision = 1.0;
813  } else {
814  this->ellipsoidShapePrecision = precision;
815  }
816 }
817 
833 void vpDot2::setMaxSizeSearchDistancePrecision(const double &precision)
834 {
835  double epsilon = 0.05;
836  if (maxSizeSearchDistancePrecision < epsilon) {
837  this->maxSizeSearchDistancePrecision = epsilon;
838  } else if (maxSizeSearchDistancePrecision > 1) {
839  this->maxSizeSearchDistancePrecision = 1.0;
840  } else {
841  this->maxSizeSearchDistancePrecision = precision;
842  }
843 }
844 
853 void vpDot2::setArea(const vpImage<unsigned char> &I) { setArea(I, 0, 0, I.getWidth(), I.getHeight()); }
854 
867 void vpDot2::setArea(const vpImage<unsigned char> &I, int u, int v, unsigned int w, unsigned int h)
868 {
869  unsigned int image_w = I.getWidth();
870  unsigned int image_h = I.getHeight();
871 
872  // Bounds the area to the image
873  if (u < 0)
874  u = 0;
875  else if (u >= (int)image_w)
876  u = (int)image_w - 1;
877  if (v < 0)
878  v = 0;
879  else if (v >= (int)image_h)
880  v = (int)image_h - 1;
881 
882  if (((unsigned int)u + w) > image_w)
883  w = image_w - (unsigned int)u - 1;
884  if (((unsigned int)v + h) > image_h)
885  h = image_h - (unsigned int)v - 1;
886 
887  area.setRect(u, v, w, h);
888 }
889 
897 void vpDot2::setArea(const vpRect &a) { area = a; }
898 
900 
952 void vpDot2::searchDotsInArea(const vpImage<unsigned char> &I, std::list<vpDot2> &niceDots)
953 {
954  searchDotsInArea(I, 0, 0, I.getWidth(), I.getHeight(), niceDots);
955 }
956 
979 void vpDot2::searchDotsInArea(const vpImage<unsigned char> &I, int area_u, int area_v, unsigned int area_w,
980  unsigned int area_h, std::list<vpDot2> &niceDots)
981 
982 {
983  // clear the list of nice dots
984  niceDots.clear();
985 
986  // Fit the input area in the image; we keep only the common part between
987  // this area and the image.
988  setArea(I, area_u, area_v, area_w, area_h);
989 
990  // compute the size of the search grid
991  unsigned int gridWidth;
992  unsigned int gridHeight;
993  getGridSize(gridWidth, gridHeight);
994 
995  if (graphics) {
996  // Display the area were the dot is search
997  vpDisplay::displayRectangle(I, area, vpColor::blue, false, thickness);
998  // vpDisplay::flush(I);
999  }
1000 
1001 #ifdef DEBUG
1003  vpDisplay::flush(I);
1004 #endif
1005  // start the search loop; for all points of the search grid,
1006  // test if the pixel belongs to a valid dot.
1007  // if it is so eventually add it to the vector of valid dots.
1008  std::list<vpDot2> badDotsVector;
1009  std::list<vpDot2>::iterator itnice;
1010  std::list<vpDot2>::iterator itbad;
1011 
1012  vpDot2 *dotToTest = NULL;
1013  vpDot2 tmpDot;
1014 
1015  unsigned int area_u_min = (unsigned int)area.getLeft();
1016  unsigned int area_u_max = (unsigned int)area.getRight();
1017  unsigned int area_v_min = (unsigned int)area.getTop();
1018  unsigned int area_v_max = (unsigned int)area.getBottom();
1019 
1020  unsigned int u, v;
1021  vpImagePoint cogTmpDot;
1022 
1023  for (v = area_v_min; v < area_v_max; v = v + gridHeight) {
1024  for (u = area_u_min; u < area_u_max; u = u + gridWidth) {
1025  // if the pixel we're in doesn't have the right color (outside the
1026  // graylevel interval), no need to check further, just get to the
1027  // next grid intersection.
1028  if (!hasGoodLevel(I, u, v))
1029  continue;
1030 
1031  // Test if an other germ is inside the bounding box of a dot previously
1032  // detected
1033  bool good_germ = true;
1034 
1035  itnice = niceDots.begin();
1036  while (itnice != niceDots.end() && good_germ == true) {
1037  tmpDot = *itnice;
1038 
1039  cogTmpDot = tmpDot.getCog();
1040  double u0 = cogTmpDot.get_u();
1041  double v0 = cogTmpDot.get_v();
1042  double half_w = tmpDot.getWidth() / 2.;
1043  double half_h = tmpDot.getHeight() / 2.;
1044 
1045  if (u >= (u0 - half_w) && u <= (u0 + half_w) && v >= (v0 - half_h) && v <= (v0 + half_h)) {
1046  // Germ is in a previously detected dot
1047  good_germ = false;
1048  }
1049  ++itnice;
1050  }
1051 
1052  if (!good_germ)
1053  continue;
1054 
1055  // Compute the right border position for this possible germ
1056  unsigned int border_u;
1057  unsigned int border_v;
1058  if (findFirstBorder(I, u, v, border_u, border_v) == false) {
1059  // germ is not good.
1060  // Jump all the pixels between v,u and v,
1061  // dotToTest->getFirstBorder_u()
1062  u = border_u;
1063  v = border_v;
1064  continue;
1065  }
1066 
1067  itbad = badDotsVector.begin();
1068 #define vpBAD_DOT_VALUE (*itbad)
1069  vpImagePoint cogBadDot;
1070 
1071  while (itbad != badDotsVector.end() && good_germ == true) {
1072  if ((double)u >= vpBAD_DOT_VALUE.bbox_u_min && (double)u <= vpBAD_DOT_VALUE.bbox_u_max &&
1073  (double)v >= vpBAD_DOT_VALUE.bbox_v_min && (double)v <= vpBAD_DOT_VALUE.bbox_v_max) {
1074  std::list<vpImagePoint>::const_iterator it_edges = ip_edges_list.begin();
1075  while (it_edges != ip_edges_list.end() && good_germ == true) {
1076  // Test if the germ belong to a previously detected dot:
1077  // - from the germ go right to the border and compare this
1078  // position to the list of pixels of previously detected dots
1079  cogBadDot = *it_edges;
1080  // if( border_u == cogBadDot.get_u() && v == cogBadDot.get_v()) {
1081  if ((std::fabs(border_u - cogBadDot.get_u()) <=
1082  vpMath::maximum(std::fabs((double)border_u), std::fabs(cogBadDot.get_u())) *
1083  std::numeric_limits<double>::epsilon()) &&
1084  (std::fabs(v - cogBadDot.get_v()) <=
1085  vpMath::maximum(std::fabs((double)v), std::fabs(cogBadDot.get_v())) *
1086  std::numeric_limits<double>::epsilon())) {
1087  good_germ = false;
1088  }
1089  ++it_edges;
1090  }
1091  }
1092  ++itbad;
1093  }
1094 #undef vpBAD_DOT_VALUE
1095 
1096  if (!good_germ) {
1097  // Jump all the pixels between v,u and v,
1098  // dotToTest->getFirstBorder_u()
1099  u = border_u;
1100  v = border_v;
1101  continue;
1102  }
1103 
1104  vpTRACE(4, "Try germ (%d, %d)", u, v);
1105 
1106  vpImagePoint germ;
1107  germ.set_u(u);
1108  germ.set_v(v);
1109 
1110  // otherwise estimate the width, height and surface of the dot we
1111  // created, and test it.
1112  if (dotToTest != NULL)
1113  delete dotToTest;
1114  dotToTest = getInstance();
1115  dotToTest->setCog(germ);
1116  dotToTest->setGrayLevelMin(getGrayLevelMin());
1117  dotToTest->setGrayLevelMax(getGrayLevelMax());
1119  dotToTest->setSizePrecision(getSizePrecision());
1120  dotToTest->setGraphics(graphics);
1121  dotToTest->setGraphicsThickness(thickness);
1122  dotToTest->setComputeMoments(true);
1123  dotToTest->setArea(area);
1124  dotToTest->setEllipsoidShapePrecision(ellipsoidShapePrecision);
1125  dotToTest->setEllipsoidBadPointsPercentage(allowedBadPointsPercentage_);
1126 
1127  // first compute the parameters of the dot.
1128  // if for some reasons this caused an error tracking
1129  // (dot partially out of the image...), check the next intersection
1130  if (dotToTest->computeParameters(I) == false) {
1131  // Jump all the pixels between v,u and v,
1132  // dotToTest->getFirstBorder_u()
1133  u = border_u;
1134  v = border_v;
1135  continue;
1136  }
1137  // if the dot to test is valid,
1138  if (dotToTest->isValid(I, *this)) {
1139  vpImagePoint cogDotToTest = dotToTest->getCog();
1140  // Compute the distance to the center. The center used here is not the
1141  // area center available by area.getCenter(area_center_u,
1142  // area_center_v) but the center of the input area which may be
1143  // partially outside the image.
1144 
1145  double area_center_u = area_u + area_w / 2.0 - 0.5;
1146  double area_center_v = area_v + area_h / 2.0 - 0.5;
1147 
1148  double thisDiff_u = cogDotToTest.get_u() - area_center_u;
1149  double thisDiff_v = cogDotToTest.get_v() - area_center_v;
1150  double thisDist = sqrt(thisDiff_u * thisDiff_u + thisDiff_v * thisDiff_v);
1151 
1152  bool stopLoop = false;
1153  itnice = niceDots.begin();
1154 
1155  while (itnice != niceDots.end() && stopLoop == false) {
1156  tmpDot = *itnice;
1157 
1158  // double epsilon = 0.001; // detecte +sieurs points
1159  double epsilon = 3.0;
1160  // if the center of the dot is the same than the current
1161  // don't add it, test the next point of the grid
1162  cogTmpDot = tmpDot.getCog();
1163 
1164  if (fabs(cogTmpDot.get_u() - cogDotToTest.get_u()) < epsilon &&
1165  fabs(cogTmpDot.get_v() - cogDotToTest.get_v()) < epsilon) {
1166  stopLoop = true;
1167  // Jump all the pixels between v,u and v,
1168  // tmpDot->getFirstBorder_u()
1169  u = border_u;
1170  v = border_v;
1171  continue;
1172  }
1173 
1174  double otherDiff_u = cogTmpDot.get_u() - area_center_u;
1175  double otherDiff_v = cogTmpDot.get_v() - area_center_v;
1176  double otherDist = sqrt(otherDiff_u * otherDiff_u + otherDiff_v * otherDiff_v);
1177 
1178  // if the distance of the curent vector element to the center
1179  // is greater than the distance of this dot to the center,
1180  // then add this dot before the current vector element.
1181  if (otherDist > thisDist) {
1182  niceDots.insert(itnice, *dotToTest);
1183  ++itnice;
1184  stopLoop = true;
1185  // Jump all the pixels between v,u and v,
1186  // tmpDot->getFirstBorder_u()
1187  u = border_u;
1188  v = border_v;
1189  continue;
1190  }
1191  ++itnice;
1192  }
1193  vpTRACE(4, "End while (%d, %d)", u, v);
1194 
1195  // if we reached the end of the vector without finding the dot
1196  // or inserting it, insert it now.
1197  if (itnice == niceDots.end() && stopLoop == false) {
1198  niceDots.push_back(*dotToTest);
1199  }
1200  } else {
1201  // Store bad dots
1202  badDotsVector.push_front(*dotToTest);
1203  }
1204  }
1205  }
1206  if (dotToTest != NULL)
1207  delete dotToTest;
1208 }
1209 
1230 bool vpDot2::isValid(const vpImage<unsigned char> &I, const vpDot2 &wantedDot)
1231 {
1232  double size_precision = wantedDot.getSizePrecision();
1233  double ellipsoidShape_precision = wantedDot.getEllipsoidShapePrecision();
1234 
1235  //
1236  // First, check the width, height and surface of the dot. Those parameters
1237  // must be the same.
1238  //
1239  // if ( (wantedDot.getWidth() != 0)
1240  // && (wantedDot.getHeight() != 0)
1241  // && (wantedDot.getArea() != 0) )
1242  if ((std::fabs(wantedDot.getWidth()) > std::numeric_limits<double>::epsilon()) &&
1243  (std::fabs(wantedDot.getHeight()) > std::numeric_limits<double>::epsilon()) &&
1244  (std::fabs(wantedDot.getArea()) > std::numeric_limits<double>::epsilon()))
1245  // if (size_precision!=0){
1246  {
1247  if (std::fabs(size_precision) > std::numeric_limits<double>::epsilon()) {
1248  double epsilon = 0.001;
1249 #ifdef DEBUG
1250  std::cout << "test size precision......................\n";
1251  std::cout << "wanted dot: "
1252  << "w=" << wantedDot.getWidth() << " h=" << wantedDot.getHeight() << " s=" << wantedDot.getArea()
1253  << " precision=" << size_precision << " epsilon=" << epsilon << std::endl;
1254  std::cout << "dot found: "
1255  << "w=" << getWidth() << " h=" << getHeight() << " s=" << getArea() << std::endl;
1256 #endif
1257 
1258  if ((wantedDot.getWidth() * size_precision - epsilon < getWidth()) == false) {
1259  vpDEBUG_TRACE(3, "Bad width > for dot (%g, %g)", cog.get_u(), cog.get_v());
1260 #ifdef DEBUG
1261  printf("Bad width > for dot (%g, %g)\n", cog.get_u(), cog.get_v());
1262 #endif
1263  return false;
1264  }
1265 
1266  if ((getWidth() < wantedDot.getWidth() / (size_precision + epsilon)) == false) {
1267  vpDEBUG_TRACE(3, "Bad width > for dot (%g, %g)", cog.get_u(), cog.get_v());
1268 #ifdef DEBUG
1269  printf("Bad width %g > %g for dot (%g, %g)\n", getWidth(), wantedDot.getWidth() / (size_precision + epsilon),
1270  cog.get_u(), cog.get_v());
1271 #endif
1272  return false;
1273  }
1274 
1275  if ((wantedDot.getHeight() * size_precision - epsilon < getHeight()) == false) {
1276  vpDEBUG_TRACE(3, "Bad height > for dot (%g, %g)", cog.get_u(), cog.get_v());
1277 #ifdef DEBUG
1278  printf("Bad height %g > %g for dot (%g, %g)\n", wantedDot.getHeight() * size_precision - epsilon, getHeight(),
1279  cog.get_u(), cog.get_v());
1280 #endif
1281  return false;
1282  }
1283 
1284  if ((getHeight() < wantedDot.getHeight() / (size_precision + epsilon)) == false) {
1285  vpDEBUG_TRACE(3, "Bad height > for dot (%g, %g)", cog.get_u(), cog.get_v());
1286 #ifdef DEBUG
1287  printf("Bad height %g > %g for dot (%g, %g)\n", getHeight(), wantedDot.getHeight() / (size_precision + epsilon),
1288  cog.get_u(), cog.get_v());
1289 #endif
1290  return false;
1291  }
1292 
1293  if ((wantedDot.getArea() * (size_precision * size_precision) - epsilon < getArea()) == false) {
1294  vpDEBUG_TRACE(3, "Bad surface > for dot (%g, %g)", cog.get_u(), cog.get_v());
1295 #ifdef DEBUG
1296  printf("Bad surface %g > %g for dot (%g, %g)\n",
1297  wantedDot.getArea() * (size_precision * size_precision) - epsilon, getArea(), cog.get_u(), cog.get_v());
1298 #endif
1299  return false;
1300  }
1301 
1302  if ((getArea() < wantedDot.getArea() / (size_precision * size_precision + epsilon)) == false) {
1303  vpDEBUG_TRACE(3, "Bad surface > for dot (%g, %g)", cog.get_u(), cog.get_v());
1304 #ifdef DEBUG
1305  printf("Bad surface %g < %g for dot (%g, %g)\n", getArea(),
1306  wantedDot.getArea() / (size_precision * size_precision + epsilon), cog.get_u(), cog.get_v());
1307 #endif
1308  return false;
1309  }
1310  }
1311  }
1312  //
1313  // Now we can proceed to more advanced (and costy) checks.
1314  // First check there is a white (>level) elipse within dot
1315  // Then check the dot is surrounded by a black ellipse.
1316  //
1317  int nb_point_to_test = 20; // Nb points to test on inner and outside ellipsoid
1318  int nb_bad_points = 0;
1319  int nb_max_bad_points = (int)(nb_point_to_test * allowedBadPointsPercentage_);
1320  double step_angle = 2 * M_PI / nb_point_to_test;
1321 
1322  // if (ellipsoidShape_precision != 0 && compute_moment) {
1323  if (std::fabs(ellipsoidShape_precision) > std::numeric_limits<double>::epsilon() && compute_moment) {
1324  // Chaumette, Image Moments: A General and Useful Set of Features for Visual Servoing, TRO 2004, eq 15
1325 
1326  // mu11 = m11 - m00 * xg * yg = m11 - m00 * m10/m00 * m01/m00
1327  // = m11 - m10 * m01 / m00
1328  // mu20 = m20 - m00 * xg^2 = m20 - m00 * m10/m00 * m10/m00
1329  // = m20 - m10^2 / m00
1330  // mu02 = m02 - m01^2 / m00
1331  // alpha = 1/2 arctan( 2 * mu11 / (mu20 - mu02) )
1332  //
1333  // a1^2 = 2 / m00 * (mu02 + mu20 + sqrt( (mu20 - mu02)^2 + 4mu11^2) )
1334  //
1335  // a2^2 = 2 / m00 * (mu02 + mu20 - sqrt( (mu20 - mu02)^2 + 4mu11^2) )
1336 
1337  // we compute parameters of the estimated ellipse
1338  double tmp1 = (m01 * m01 - m10 * m10) / m00 + (m20 - m02);
1339  double tmp2 = m11 - m10 * m01 / m00;
1340  double Sqrt = sqrt(tmp1 * tmp1 + 4 * tmp2 * tmp2);
1341  double a1 = sqrt(2 / m00 * ((m20 + m02) - (m10 * m10 + m01 * m01) / m00 + Sqrt));
1342  double a2 = sqrt(2 / m00 * ((m20 + m02) - (m10 * m10 + m01 * m01) / m00 - Sqrt));
1343  double alpha = 0.5 * atan2(2 * (m11 * m00 - m10 * m01), ((m20 - m02) * m00 - m10 * m10 + m01 * m01));
1344 
1345  // to be able to track small dots, minorize the ellipsoid radius for the
1346  // inner test
1347  a1 -= 1.0;
1348  a2 -= 1.0;
1349 
1350  double innerCoef = ellipsoidShape_precision;
1351  unsigned int u, v;
1352  double cog_u = this->cog.get_u();
1353  double cog_v = this->cog.get_v();
1354 
1355  vpImagePoint ip;
1356  nb_bad_points = 0;
1357  for (double theta = 0.; theta < 2 * M_PI; theta += step_angle) {
1358  u = (unsigned int)(cog_u + innerCoef * (a1 * cos(alpha) * cos(theta) - a2 * sin(alpha) * sin(theta)));
1359  v = (unsigned int)(cog_v + innerCoef * (a1 * sin(alpha) * cos(theta) + a2 * cos(alpha) * sin(theta)));
1360  if (!this->hasGoodLevel(I, u, v)) {
1361 // vpTRACE("Inner circle pixel (%d, %d) has bad level for dot (%g, %g)",
1362 // u, v, cog_u, cog_v);
1363 #ifdef DEBUG
1364  printf("Inner circle pixel (%u, %u) has bad level for dot (%g, %g): "
1365  "%d not in [%u, %u]\n",
1366  u, v, cog_u, cog_v, I[v][u], gray_level_min, gray_level_max);
1367 #endif
1368  // return false;
1369  nb_bad_points++;
1370  }
1371  if (graphics) {
1372  for (unsigned int t = 0; t < thickness; t++) {
1373  ip.set_u(u + t);
1374  ip.set_v(v);
1376  }
1377  }
1378 #ifdef DEBUG
1380  vpDisplay::flush(I);
1381 #endif
1382  }
1383  if (nb_bad_points > nb_max_bad_points) {
1384 #ifdef DEBUG
1385  printf("Inner ellipse has %d bad points. Max allowed is %d\n", nb_bad_points, nb_max_bad_points);
1386 #endif
1387  return false;
1388  }
1389  // to be able to track small dots, maximize the ellipsoid radius for the
1390  // inner test
1391  a1 += 2.0;
1392  a2 += 2.0;
1393 
1394  double outCoef = 2 - ellipsoidShape_precision; // 1.6;
1395  nb_bad_points = 0;
1396  for (double theta = 0.; theta < 2 * M_PI; theta += step_angle) {
1397  u = (unsigned int)(cog_u + outCoef * (a1 * cos(alpha) * cos(theta) - a2 * sin(alpha) * sin(theta)));
1398  v = (unsigned int)(cog_v + outCoef * (a1 * sin(alpha) * cos(theta) + a2 * cos(alpha) * sin(theta)));
1399 #ifdef DEBUG
1400  // vpDisplay::displayRectangle(I, area, vpColor::yellow);
1401  vpDisplay::displayCross(I, (int)v, (int)u, 7, vpColor::purple);
1402  vpDisplay::flush(I);
1403 #endif
1404  // If outside the area, continue
1405  if ((double)u < area.getLeft() || (double)u > area.getRight() || (double)v < area.getTop() ||
1406  (double)v > area.getBottom()) {
1407  continue;
1408  }
1409  if (!this->hasReverseLevel(I, u, v)) {
1410 // vpTRACE("Outside circle pixel (%d, %d) has bad level for dot (%g,
1411 // %g)", u, v, cog_u, cog_v);
1412 #ifdef DEBUG
1413  printf("Outside circle pixel (%u, %u) has bad level for dot (%g, "
1414  "%g): %d not in [%u, %u]\n",
1415  u, v, cog_u, cog_v, I[v][u], gray_level_min, gray_level_max);
1416 #endif
1417  nb_bad_points++;
1418  // return false;
1419  }
1420  if (graphics) {
1421  for (unsigned int t = 0; t < thickness; t++) {
1422  ip.set_u(u + t);
1423  ip.set_v(v);
1424 
1426  }
1427  }
1428  }
1429  }
1430  if (nb_bad_points > nb_max_bad_points) {
1431 #ifdef DEBUG
1432  printf("Outside ellipse has %d bad points. Max allowed is %d\n", nb_bad_points, nb_max_bad_points);
1433 #endif
1434  return false;
1435  }
1436 
1437  return true;
1438 }
1439 
1458 bool vpDot2::hasGoodLevel(const vpImage<unsigned char> &I, const unsigned int &u, const unsigned int &v) const
1459 {
1460  if (!isInArea(u, v))
1461  return false;
1462 
1463  if (I[v][u] >= gray_level_min && I[v][u] <= gray_level_max) {
1464  return true;
1465  } else {
1466  return false;
1467  }
1468 }
1469 
1482 bool vpDot2::hasReverseLevel(const vpImage<unsigned char> &I, const unsigned int &u, const unsigned int &v) const
1483 {
1484 
1485  if (!isInArea(u, v))
1486  return false;
1487 
1488  if (I[v][u] < gray_level_min || I[v][u] > gray_level_max) {
1489  return true;
1490  } else {
1491  return false;
1492  }
1493 }
1494 
1503 vpDot2 *vpDot2::getInstance() { return new vpDot2(); }
1504 
1520 void vpDot2::getFreemanChain(std::list<unsigned int> &freeman_chain) const { freeman_chain = direction_list; }
1521 
1522 /******************************************************************************
1523  *
1524  * PRIVATE METHODS
1525  *
1526  ******************************************************************************/
1527 
1559 bool vpDot2::computeParameters(const vpImage<unsigned char> &I, const double &_u, const double &_v)
1560 {
1561  direction_list.clear();
1562  ip_edges_list.clear();
1563 
1564  double est_u = _u; // estimated
1565  double est_v = _v;
1566 
1567  // if u has default value, set it to the actual center value
1568  // if( est_u == -1.0 )
1569  if (std::fabs(est_u + 1.0) <= vpMath::maximum(std::fabs(est_u), 1.) * std::numeric_limits<double>::epsilon()) {
1570  est_u = this->cog.get_u();
1571  }
1572 
1573  // if v has default value, set it to the actual center value
1574  // if( est_v == -1.0 )
1575  if (std::fabs(est_v + 1.0) <= vpMath::maximum(std::fabs(est_v), 1.) * std::numeric_limits<double>::epsilon()) {
1576  est_v = this->cog.get_v();
1577  }
1578 
1579  // if the estimated position of the dot is out of the image, not need to
1580  // continue, return an error tracking
1581  if (!isInArea((unsigned int)est_u, (unsigned int)est_v)) {
1582  vpDEBUG_TRACE(3,
1583  "Initial pixel coordinates (%d, %d) for dot tracking are "
1584  "not in the area",
1585  (int)est_u, (int)est_v);
1586  return false;
1587  }
1588 
1589  bbox_u_min = (int)I.getWidth();
1590  bbox_u_max = 0;
1591  bbox_v_min = (int)I.getHeight();
1592  bbox_v_max = 0;
1593 
1594  // if the first point doesn't have the right level then there's no point to
1595  // continue.
1596  if (!hasGoodLevel(I, (unsigned int)est_u, (unsigned int)est_v)) {
1597  vpDEBUG_TRACE(3, "Can't find a dot from pixel (%d, %d) coordinates", (int)est_u, (int)est_v);
1598  return false;
1599  }
1600 
1601  // find the border
1602 
1603  if (!findFirstBorder(I, (unsigned int)est_u, (unsigned int)est_v, this->firstBorder_u, this->firstBorder_v)) {
1604 
1605  vpDEBUG_TRACE(3, "Can't find first border (%d, %d) coordinates", (int)est_u, (int)est_v);
1606  return false;
1607  }
1608 
1609  unsigned int dir = 6;
1610 
1611  // Determine the first element of the Freeman chain
1612  computeFreemanChainElement(I, this->firstBorder_u, this->firstBorder_v, dir);
1613  unsigned int firstDir = dir;
1614 
1615  // if we are now out of the image, return an error tracking
1616  if (!isInArea(this->firstBorder_u, this->firstBorder_v)) {
1617  vpDEBUG_TRACE(3, "Border pixel coordinates (%d, %d) of the dot are not in the area", this->firstBorder_u,
1618  this->firstBorder_v);
1619  return false;
1620  }
1621 
1622  // store the new direction and dot border coordinates.
1623  direction_list.push_back(dir);
1624  vpImagePoint ip;
1625  ip.set_u(this->firstBorder_u);
1626  ip.set_v(this->firstBorder_v);
1627 
1628  ip_edges_list.push_back(ip);
1629 
1630  int border_u = (int)this->firstBorder_u;
1631  int border_v = (int)this->firstBorder_v;
1632 
1633  // vpTRACE("-----------------------------------------");
1634  // vpTRACE("first border_u: %d border_v: %d dir: %d",
1635  // this->firstBorder_u, this->firstBorder_v,firstDir);
1636  int du, dv;
1637  float dS, dMu, dMv, dMuv, dMu2, dMv2;
1638  m00 = 0.0;
1639  m10 = 0.0;
1640  m01 = 0.0;
1641  m11 = 0.0;
1642  m20 = 0.0;
1643  m02 = 0.0;
1644  // while we didn't come back to the first point, follow the border
1645  do {
1646  // if it was asked, show the border
1647  if (graphics) {
1648  for (int t = 0; t < (int)thickness; t++) {
1649  ip.set_u(border_u + t);
1650  ip.set_v(border_v);
1651 
1653  }
1654  // vpDisplay::flush(I);
1655  }
1656 #ifdef DEBUG
1657  vpDisplay::displayPoint(I, border_v, border_u, vpColor::red);
1658  vpDisplay::flush(I);
1659 #endif
1660  // Determine the increments for the parameters
1661  computeFreemanParameters(border_u, border_v, dir, du, dv,
1662  dS, // surface
1663  dMu, dMv, // first order moments
1664  dMuv, dMu2, dMv2); // second order moment
1665 
1666  // Update the parameters
1667  border_u += du; // Next position on the border
1668  border_v += dv;
1669  m00 += dS; // enclosed area
1670  m10 += dMu; // First order moment along v axis
1671  m01 += dMv; // First order moment along u axis
1672  if (compute_moment) {
1673  m11 += dMuv; // Second order moment
1674  m20 += dMu2; // Second order moment along v axis
1675  m02 += dMv2; // Second order moment along u axis
1676  }
1677  // if we are now out of the image, return an error tracking
1678  if (!isInArea((unsigned int)border_u, (unsigned int)border_v)) {
1679 
1680  vpDEBUG_TRACE(3, "Dot (%d, %d) is not in the area", border_u, border_v);
1681  // Can Occur on a single pixel dot located on the top border
1682  return false;
1683  }
1684 
1685  // store the new direction and dot border coordinates.
1686 
1687  direction_list.push_back(dir);
1688 
1689  ip.set_u(border_u);
1690  ip.set_v(border_v);
1691  ip_edges_list.push_back(ip);
1692 
1693  // vpDisplay::getClick(I);
1694 
1695  // update the extreme point of the dot.
1696  if (border_v < bbox_v_min)
1697  bbox_v_min = border_v;
1698  if (border_v > bbox_v_max)
1699  bbox_v_max = border_v;
1700  if (border_u < bbox_u_min)
1701  bbox_u_min = border_u;
1702  if (border_u > bbox_u_max)
1703  bbox_u_max = border_u;
1704 
1705  // move around the tracked entity by following the border.
1706  if (computeFreemanChainElement(I, (unsigned int)border_u, (unsigned int)border_v, dir) == false) {
1707  vpDEBUG_TRACE(3, "Can't compute Freeman chain for dot (%d, %d)", border_u, border_v);
1708  return false;
1709  }
1710 
1711  // vpTRACE("border_u: %d border_v: %d dir: %d", border_u, border_v,
1712  // dir);
1713 
1714  } while ((getFirstBorder_u() != (unsigned int)border_u || getFirstBorder_v() != (unsigned int)border_v ||
1715  firstDir != dir) &&
1716  isInArea((unsigned int)border_u, (unsigned int)border_v));
1717 
1718 #ifdef VP_DEBUG
1719 #if VP_DEBUG_MODE == 3
1720  vpDisplay::flush(I);
1721 #endif
1722 #endif
1723 
1724  // if the surface is one or zero , the center of gravity wasn't properly
1725  // detected. Return an error tracking.
1726  // if( m00 == 0 || m00 == 1 )
1727  if (std::fabs(m00) <= std::numeric_limits<double>::epsilon() ||
1728  std::fabs(m00 - 1.) <= vpMath::maximum(std::fabs(m00), 1.) * std::numeric_limits<double>::epsilon()) {
1729  vpDEBUG_TRACE(3, "The center of gravity of the dot wasn't properly detected");
1730  return false;
1731  } else // compute the center
1732  {
1733  // this magic formula gives the coordinates of the center of gravity
1734  double tmpCenter_u = m10 / m00;
1735  double tmpCenter_v = m01 / m00;
1736 
1737  // Updates the second order centered moments
1738  if (compute_moment) {
1739  mu11 = m11 - tmpCenter_u * m01;
1740  mu02 = m02 - tmpCenter_v * m01;
1741  mu20 = m20 - tmpCenter_u * m10;
1742  }
1743 
1744  // check the center is in the image... never know...
1745  // if( !hasGoodLevel( I, (unsigned int)tmpCenter_u,
1746  // (unsigned int)tmpCenter_v ) )
1747  // {
1748  // vpDEBUG_TRACE(3, "The center of gravity of the dot (%g, %g) has
1749  // not a good in level", tmpCenter_u, tmpCenter_v); return false;
1750  // }
1751 
1752  cog.set_u(tmpCenter_u);
1753  cog.set_v(tmpCenter_v);
1754  }
1755 
1756  width = bbox_u_max - bbox_u_min + 1;
1757  height = bbox_v_max - bbox_v_min + 1;
1758  surface = m00;
1759 
1760  computeMeanGrayLevel(I);
1761  return true;
1762 }
1763 
1779 bool vpDot2::findFirstBorder(const vpImage<unsigned char> &I, const unsigned int &u, const unsigned int &v,
1780  unsigned int &border_u, unsigned int &border_v)
1781 {
1782  // find the border
1783 
1784  // NOTE:
1785  // from here we use int and not double. This is because we don't have
1786  // rounding problems and it's actually more a trouble than smth else to
1787  // work with double when navigating around the dot.
1788  border_u = u;
1789  border_v = v;
1790  double epsilon = 0.001;
1791 
1792 #ifdef DEBUG
1793  std::cout << "gray level: " << gray_level_min << " " << gray_level_max << std::endl;
1794 #endif
1795  while (hasGoodLevel(I, border_u + 1, border_v) && border_u < area.getRight() /*I.getWidth()*/) {
1796  // if the width of this dot was initialised and we already crossed the dot
1797  // on more than the max possible width, no need to continue, return an
1798  // error tracking
1799  if (getWidth() > 0 && (border_u - u) > getWidth() / (getMaxSizeSearchDistancePrecision() + epsilon)) {
1800  vpDEBUG_TRACE(3,
1801  "The found dot (%d, %d, %d) has a greater width than the "
1802  "required one",
1803  u, v, border_u);
1804  return false;
1805  }
1806 #ifdef DEBUG
1807  vpDisplay::displayPoint(I, (int)border_v, (int)border_u + 1, vpColor::green);
1808  vpDisplay::flush(I);
1809 #endif
1810 
1811  border_u++;
1812  }
1813  return true;
1814 }
1815 
1834 bool vpDot2::computeFreemanChainElement(const vpImage<unsigned char> &I, const unsigned int &u, const unsigned int &v,
1835  unsigned int &element)
1836 {
1837 
1838  if (hasGoodLevel(I, u, v)) {
1839  unsigned int _u = u;
1840  unsigned int _v = v;
1841  // get the point on the right of the point passed in
1842  updateFreemanPosition(_u, _v, (element + 2) % 8);
1843  if (hasGoodLevel(I, _u, _v)) {
1844  element = (element + 2) % 8; // turn right
1845  } else {
1846  unsigned int _u1 = u;
1847  unsigned int _v1 = v;
1848  updateFreemanPosition(_u1, _v1, (element + 1) % 8);
1849 
1850  if (hasGoodLevel(I, _u1, _v1)) {
1851  element = (element + 1) % 8; // turn diag right
1852  } else {
1853  unsigned int _u2 = u;
1854  unsigned int _v2 = v;
1855  updateFreemanPosition(_u2, _v2, element); // same direction
1856 
1857  if (hasGoodLevel(I, _u2, _v2)) {
1858  // element = element; // keep same dir
1859  } else {
1860  unsigned int _u3 = u;
1861  unsigned int _v3 = v;
1862  updateFreemanPosition(_u3, _v3, (element + 7) % 8); // diag left
1863 
1864  if (hasGoodLevel(I, _u3, _v3)) {
1865  element = (element + 7) % 8; // turn diag left
1866  } else {
1867  unsigned int _u4 = u;
1868  unsigned int _v4 = v;
1869  updateFreemanPosition(_u4, _v4, (element + 6) % 8); // left
1870 
1871  if (hasGoodLevel(I, _u4, _v4)) {
1872  element = (element + 6) % 8; // turn left
1873  } else {
1874  unsigned int _u5 = u;
1875  unsigned int _v5 = v;
1876  updateFreemanPosition(_u5, _v5, (element + 5) % 8); // left
1877 
1878  if (hasGoodLevel(I, _u5, _v5)) {
1879  element = (element + 5) % 8; // turn diag down
1880  } else {
1881  unsigned int _u6 = u;
1882  unsigned int _v6 = v;
1883  updateFreemanPosition(_u6, _v6, (element + 4) % 8); // left
1884 
1885  if (hasGoodLevel(I, _u6, _v6)) {
1886  element = (element + 4) % 8; // turn down
1887  } else {
1888  unsigned int _u7 = u;
1889  unsigned int _v7 = v;
1890  updateFreemanPosition(_u7, _v7, (element + 3) % 8); // diag
1891 
1892  if (hasGoodLevel(I, _u7, _v7)) {
1893  element = (element + 3) % 8; // turn diag right down
1894  } else {
1895  // No neighbor with a good level
1896  //
1897  return false;
1898  }
1899  }
1900  }
1901  }
1902  }
1903  }
1904  }
1905  }
1906  }
1907 
1908  else {
1909  return false;
1910  }
1911 
1912  return true;
1913 }
1914 
1946 void vpDot2::computeFreemanParameters(const int &u_p, const int &v_p, unsigned int &element, int &du, int &dv,
1947  float &dS, float &dMu, float &dMv, float &dMuv, float &dMu2, float &dMv2)
1948 {
1949  du = 0;
1950  dv = 0;
1951  dMuv = 0;
1952  dMu2 = 0;
1953  dMv2 = 0;
1954 
1955  /*
1956  3 2 1
1957  \ | /
1958  \|/
1959  4 ------- 0
1960  /|\
1961  / | \
1962  5 6 7
1963  */
1964  switch (element) {
1965  case 0: // go right
1966  du = 1;
1967  dS = (float)v_p;
1968  dMu = 0.0;
1969  dMv = (float)(0.5 * v_p * v_p);
1970  if (compute_moment) {
1971  dMuv = (float)(0.25 * v_p * v_p * (2 * u_p + 1));
1972  dMu2 = 0;
1973  dMv2 = (float)(1.0 / 3. * v_p * v_p * v_p);
1974  }
1975  break;
1976 
1977  case 1: // go right top
1978  du = 1;
1979  dv = 1;
1980  dS = (float)(v_p + 0.5);
1981  dMu = -(float)(0.5 * u_p * (u_p + 1) + 1.0 / 6.0);
1982  dMv = (float)(0.5 * v_p * (v_p + 1) + 1.0 / 6.0);
1983  if (compute_moment) {
1984  float half_u_p = (float)(0.5 * u_p);
1985  dMuv = (float)(v_p * v_p * (0.25 + half_u_p) + v_p * (1. / 3. + half_u_p) + 1. / 6. * u_p + 0.125);
1986  dMu2 = (float)(-1. / 3. * u_p * (u_p * u_p + 1.5 * u_p + 1.) - 1. / 12.0);
1987  dMv2 = (float)(1. / 3. * v_p * (v_p * v_p + 1.5 * v_p + 1.) + 1. / 12.0);
1988  }
1989  break;
1990 
1991  case 2: // go top
1992  dv = 1;
1993  dS = 0.0;
1994  dMu = (float)(-0.5 * u_p * u_p);
1995  dMv = 0.0;
1996  if (compute_moment) {
1997  dMuv = 0;
1998  dMu2 = (float)(-1.0 / 3. * u_p * u_p * u_p);
1999  dMv2 = 0;
2000  }
2001  break;
2002 
2003  case 3:
2004  du = -1;
2005  dv = 1;
2006  dS = (float)(-v_p - 0.5);
2007  dMu = -(float)(0.5 * u_p * (u_p - 1) + 1.0 / 6.0);
2008  dMv = -(float)(0.5 * v_p * (v_p + 1) + 1.0 / 6.0);
2009  if (compute_moment) {
2010  float half_u_p = (float)(0.5 * u_p);
2011  dMuv = (float)(v_p * v_p * (0.25 - half_u_p) + v_p * (1. / 3. - half_u_p) - 1. / 6. * u_p + 0.125);
2012  dMu2 = (float)(-1. / 3. * u_p * (u_p * u_p - 1.5 * u_p + 1.) - 1. / 12.0);
2013  dMv2 = (float)(-1. / 3. * v_p * (v_p * v_p + 1.5 * v_p + 1.) - 1. / 12.0);
2014  }
2015  break;
2016 
2017  case 4:
2018  du = -1;
2019  dS = (float)(-v_p);
2020  dMv = (float)(-0.5 * v_p * v_p);
2021  dMu = 0.0;
2022  if (compute_moment) {
2023  dMuv = (float)(-0.25 * v_p * v_p * (2 * u_p - 1));
2024  dMu2 = 0;
2025  dMv2 = (float)(-1.0 / 3. * v_p * v_p * v_p);
2026  }
2027  break;
2028 
2029  case 5:
2030  du = -1;
2031  dv = -1;
2032  dS = (float)(-v_p + 0.5);
2033  dMu = (float)(0.5 * u_p * (u_p - 1) + 1.0 / 6.0);
2034  dMv = (float)(-(0.5 * v_p * (v_p - 1) + 1.0 / 6.0));
2035  if (compute_moment) {
2036  float half_u_p = (float)(0.5 * u_p);
2037  dMuv = (float)(v_p * v_p * (0.25 - half_u_p) - v_p * (1. / 3. - half_u_p) - 1. / 6. * u_p + 0.125);
2038  dMu2 = (float)(1. / 3. * u_p * (u_p * u_p - 1.5 * u_p + 1.) - 1. / 12.0);
2039  dMv2 = (float)(-1. / 3. * v_p * (v_p * v_p - 1.5 * v_p + 1.) - 1. / 12.0);
2040  }
2041  break;
2042 
2043  case 6:
2044  dv = -1;
2045  dS = 0.0;
2046  dMu = (float)(0.5 * u_p * u_p);
2047  dMv = 0.0;
2048  if (compute_moment) {
2049  dMuv = 0;
2050  dMu2 = (float)(1.0 / 3. * u_p * u_p * u_p);
2051  dMv2 = 0;
2052  }
2053  break;
2054 
2055  case 7:
2056  du = 1;
2057  dv = -1;
2058  dS = (float)(v_p - 0.5);
2059  dMu = (float)(0.5 * u_p * (u_p + 1) + 1.0 / 6.0);
2060  dMv = (float)(0.5 * v_p * (v_p - 1) + 1.0 / 6.0);
2061  if (compute_moment) {
2062  float half_u_p = (float)(0.5 * u_p);
2063  dMuv = (float)(v_p * v_p * (0.25 + half_u_p) - v_p * (1. / 3. + half_u_p) + 1. / 6. * u_p + 0.125);
2064  dMu2 = (float)(1. / 3. * u_p * (u_p * u_p + 1.5 * u_p + 1.) + 1. / 12.0);
2065  dMv2 = (float)(1. / 3. * v_p * (v_p * v_p - 1.5 * v_p + 1.) - 1. / 12.0);
2066  }
2067  break;
2068  }
2069 }
2070 
2084 void vpDot2::updateFreemanPosition(unsigned int &u, unsigned int &v, const unsigned int &dir)
2085 {
2086  switch (dir) {
2087  case 0:
2088  u += 1;
2089  break;
2090  case 1:
2091  u += 1;
2092  v += 1;
2093  break;
2094  case 2:
2095  v += 1;
2096  break;
2097  case 3:
2098  u -= 1;
2099  v += 1;
2100  break;
2101  case 4:
2102  u -= 1;
2103  break;
2104  case 5:
2105  u -= 1;
2106  v -= 1;
2107  break;
2108  case 6:
2109  v -= 1;
2110  break;
2111  case 7:
2112  u += 1;
2113  v -= 1;
2114  break;
2115  }
2116 }
2117 
2129 bool vpDot2::isInImage(const vpImage<unsigned char> &I) const { return isInImage(I, cog); }
2130 
2142 bool vpDot2::isInImage(const vpImage<unsigned char> &I, const vpImagePoint &ip) const
2143 {
2144  unsigned int h = I.getHeight();
2145  unsigned int w = I.getWidth();
2146  double u = ip.get_u();
2147  double v = ip.get_v();
2148 
2149  if (u < 0 || u >= w)
2150  return false;
2151  if (v < 0 || v >= h)
2152  return false;
2153  return true;
2154 }
2155 
2167 bool vpDot2::isInArea(const unsigned int &u, const unsigned int &v) const
2168 {
2169  unsigned int area_u_min = (unsigned int)area.getLeft();
2170  unsigned int area_u_max = (unsigned int)area.getRight();
2171  unsigned int area_v_min = (unsigned int)area.getTop();
2172  unsigned int area_v_max = (unsigned int)area.getBottom();
2173 
2174  if (u < area_u_min || u > area_u_max)
2175  return false;
2176  if (v < area_v_min || v > area_v_max)
2177  return false;
2178  return true;
2179 }
2180 
2192 void vpDot2::getGridSize(unsigned int &gridWidth, unsigned int &gridHeight)
2193 {
2194  // first get the research grid width and height Note that
2195  // 1/sqrt(2)=cos(pi/4). The grid squares should be small enough to be
2196  // contained in the dot. We gent this here if the dot is a perfect disc.
2197  // More accurate criterium to define the grid should be implemented if
2198  // necessary
2199  gridWidth = (unsigned int)(getWidth() * getMaxSizeSearchDistancePrecision() / sqrt(2.));
2200  gridHeight = (unsigned int)(getHeight() * getMaxSizeSearchDistancePrecision() / sqrt(2.0));
2201 
2202  if (gridWidth == 0)
2203  gridWidth = 1;
2204  if (gridHeight == 0)
2205  gridHeight = 1;
2206 }
2207 
2220 void vpDot2::computeMeanGrayLevel(const vpImage<unsigned char> &I)
2221 {
2222  int cog_u = (int)cog.get_u();
2223  int cog_v = (int)cog.get_v();
2224 
2225  unsigned int sum_value = 0;
2226  unsigned int nb_pixels = 0;
2227 
2228  for (unsigned int i = (unsigned int)this->bbox_u_min; i <= (unsigned int)this->bbox_u_max; i++) {
2229  unsigned int pixel_gray = (unsigned int)I[(unsigned int)cog_v][i];
2230  if (pixel_gray >= getGrayLevelMin() && pixel_gray <= getGrayLevelMax()) {
2231  sum_value += pixel_gray;
2232  nb_pixels++;
2233  }
2234  }
2235  for (unsigned int i = (unsigned int)this->bbox_v_min; i <= (unsigned int)this->bbox_v_max; i++) {
2236  unsigned char pixel_gray = I[i][(unsigned int)cog_u];
2237  if (pixel_gray >= getGrayLevelMin() && pixel_gray <= getGrayLevelMax()) {
2238  sum_value += pixel_gray;
2239  nb_pixels++;
2240  }
2241  }
2242  if (nb_pixels < 10) { // could be good to choose the min nb points from area of dot
2243  // add diagonals points to have enough point
2244  int imin, imax;
2245  if ((cog_u - bbox_u_min) > (cog_v - bbox_v_min)) {
2246  imin = cog_v - bbox_v_min;
2247  } else {
2248  imin = cog_u - bbox_u_min;
2249  }
2250  if ((bbox_u_max - cog_u) > (bbox_v_max - cog_v)) {
2251  imax = bbox_v_max - cog_v;
2252  } else {
2253  imax = bbox_u_max - cog_u;
2254  }
2255  for (int i = -imin; i <= imax; i++) {
2256  unsigned int pixel_gray = (unsigned int)I[(unsigned int)(cog_v + i)][(unsigned int)(cog_u + i)];
2257  if (pixel_gray >= getGrayLevelMin() && pixel_gray <= getGrayLevelMax()) {
2258  sum_value += pixel_gray;
2259  nb_pixels++;
2260  }
2261  }
2262 
2263  if ((cog_u - bbox_u_min) > (bbox_v_max - cog_v)) {
2264  imin = bbox_v_max - cog_v;
2265  } else {
2266  imin = cog_u - bbox_u_min;
2267  }
2268  if ((bbox_u_max - cog_u) > (cog_v - bbox_v_min)) {
2269  imax = cog_v - bbox_v_min;
2270  } else {
2271  imax = bbox_u_max - cog_u;
2272  }
2273 
2274  for (int i = -imin; i <= imax; i++) {
2275  unsigned char pixel_gray = I[(unsigned int)(cog_v - i)][(unsigned int)(cog_u + i)];
2276  if (pixel_gray >= getGrayLevelMin() && pixel_gray <= getGrayLevelMax()) {
2277  sum_value += pixel_gray;
2278  nb_pixels++;
2279  }
2280  }
2281  }
2282 
2283  if (nb_pixels == 0) {
2284  // should never happen
2285  throw(vpTrackingException(vpTrackingException::notEnoughPointError, "No point was found"));
2286  } else {
2287  mean_gray_level = sum_value / nb_pixels;
2288  }
2289 }
2290 
2309 vpMatrix vpDot2::defineDots(vpDot2 dot[], const unsigned int &n, const std::string &dotFile, vpImage<unsigned char> &I,
2310  vpColor col, bool trackDot)
2311 {
2312  vpMatrix Cogs(n, 2);
2313  vpImagePoint cog;
2314  unsigned int i;
2315  bool fromFile = vpIoTools::checkFilename(dotFile.c_str());
2316  if (fromFile) {
2317  vpMatrix::loadMatrix(dotFile, Cogs);
2318  std::cout << Cogs.getRows() << " dots loaded from file " << dotFile << std::endl;
2319  }
2320 
2321  // test number of cogs in file
2322  if (Cogs.getRows() < n) {
2323  std::cout << "Dot file has a wrong number of dots : redefining them" << std::endl;
2324  fromFile = false;
2325  }
2326 
2327  // read from file and tracks the dots
2328  if (fromFile) {
2329  try {
2330  for (i = 0; i < n; ++i) {
2331  cog.set_uv(Cogs[i][0], Cogs[i][1]);
2332  dot[i].setGraphics(true);
2333  dot[i].setCog(cog);
2334  if (trackDot) {
2335  dot[i].initTracking(I, cog);
2336  dot[i].track(I);
2337  vpDisplay::displayCross(I, cog, 10, col);
2338  }
2339  }
2340  } catch (...) {
2341  std::cout << "Cannot track dots from file" << std::endl;
2342  fromFile = false;
2343  }
2344  vpDisplay::flush(I);
2345 
2346  // check that dots are far away ones from the other
2347  for (i = 0; i < n && fromFile; ++i) {
2348  double d = sqrt(vpMath::sqr(dot[i].getHeight()) + vpMath::sqr(dot[i].getWidth()));
2349  for (unsigned int j = 0; j < n && fromFile; ++j)
2350  if (j != i)
2351  if (dot[i].getDistance(dot[j]) < d) {
2352  fromFile = false;
2353  std::cout << "Dots from file seem incoherent" << std::endl;
2354  }
2355  }
2356  }
2357 
2358  if (!fromFile) {
2359  vpDisplay::display(I);
2360  vpDisplay::flush(I);
2361 
2362  std::cout << "Click on the " << n << " dots clockwise starting from upper/left dot..." << std::endl;
2363  for (i = 0; i < n; i++) {
2364  if (trackDot) {
2365  dot[i].setGraphics(true);
2366  dot[i].initTracking(I);
2367  cog = dot[i].getCog();
2368  } else {
2369  vpDisplay::getClick(I, cog);
2370  dot[i].setCog(cog);
2371  }
2372  Cogs[i][0] = cog.get_u();
2373  Cogs[i][1] = cog.get_v();
2374  vpDisplay::displayCross(I, cog, 10, col);
2375  vpDisplay::flush(I);
2376  }
2377  }
2378 
2379  if (!fromFile && (dotFile != "")) {
2380  vpMatrix::saveMatrix(dotFile, Cogs);
2381  std::cout << Cogs.getRows() << " dots written to file " << dotFile << std::endl;
2382  }
2383 
2384  // back to non graphic mode
2385  for (i = 0; i < n; ++i)
2386  dot[i].setGraphics(false);
2387 
2388  return Cogs;
2389 }
2390 
2407 void vpDot2::trackAndDisplay(vpDot2 dot[], const unsigned int &n, vpImage<unsigned char> &I,
2408  std::vector<vpImagePoint> &cogs, vpImagePoint *cogStar)
2409 {
2410  unsigned int i;
2411  // tracking
2412  for (i = 0; i < n; ++i) {
2413  dot[i].track(I);
2414  cogs.push_back(dot[i].getCog());
2415  }
2416  // trajectories
2417  for (i = n; i < cogs.size(); ++i)
2418  vpDisplay::displayCircle(I, cogs[i], 4, vpColor::green, true);
2419  // initial position
2420  for (i = 0; i < n; ++i)
2421  vpDisplay::displayCircle(I, cogs[i], 4, vpColor::blue, true);
2422  // if exists, desired position
2423  if (cogStar != NULL)
2424  for (i = 0; i < n; ++i) {
2425  vpDisplay::displayDotLine(I, cogStar[i], dot[i].getCog(), vpColor::red);
2426  vpDisplay::displayCircle(I, cogStar[i], 4, vpColor::red, true);
2427  }
2428  vpDisplay::flush(I);
2429 }
2430 
2446  const std::list<vpImagePoint> &edges_list, vpColor color, unsigned int thickness)
2447 {
2448  vpDisplay::displayCross(I, cog, 3 * thickness + 8, color, thickness);
2449  std::list<vpImagePoint>::const_iterator it;
2450 
2451  for (it = edges_list.begin(); it != edges_list.end(); ++it) {
2452  vpDisplay::displayPoint(I, *it, color);
2453  }
2454 }
2455 
2470 void vpDot2::display(const vpImage<vpRGBa> &I, const vpImagePoint &cog, const std::list<vpImagePoint> &edges_list,
2471  vpColor color, unsigned int thickness)
2472 {
2473  vpDisplay::displayCross(I, cog, 3 * thickness + 8, color, thickness);
2474  std::list<vpImagePoint>::const_iterator it;
2475 
2476  for (it = edges_list.begin(); it != edges_list.end(); ++it) {
2477  vpDisplay::displayPoint(I, *it, color);
2478  }
2479 }
2480 
2486 VISP_EXPORT std::ostream &operator<<(std::ostream &os, vpDot2 &d) { return (os << "(" << d.getCog() << ")"); }
double getWidth() const
Definition: vpDot2.cpp:623
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:153
double m02
Definition: vpDot2.h:415
double getTop() const
Definition: vpRect.h:193
void setGrayLevelMax(const unsigned int &max)
Definition: vpDot2.h:351
double get_v() const
Definition: vpImagePoint.h:273
void searchDotsInArea(const vpImage< unsigned char > &I, int area_u, int area_v, unsigned int area_w, unsigned int area_h, std::list< vpDot2 > &niceDots)
Definition: vpDot2.cpp:979
void getFreemanChain(std::list< unsigned int > &freeman_chain) const
Definition: vpDot2.cpp:1520
double mu02
Definition: vpDot2.h:434
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
double get_i() const
Definition: vpImagePoint.h:203
unsigned int getWidth() const
Definition: vpImage.h:246
void setMaxSizeSearchDistancePrecision(const double &maxSizeSearchDistancePrecision)
Definition: vpDot2.cpp:833
void set_u(double u)
Definition: vpImagePoint.h:225
void set_uv(double u, double v)
Definition: vpImagePoint.h:247
Class to define RGB colors available for display functionnalities.
Definition: vpColor.h:157
void setEllipsoidBadPointsPercentage(const double &percentage=0.0)
Definition: vpDot2.h:290
void setGraphics(bool activate)
Definition: vpDot2.h:314
double getGrayLevelPrecision() const
Definition: vpDot2.cpp:644
vpDot2 & operator=(const vpDot2 &twinDot)
Definition: vpDot2.cpp:147
double get_u() const
Definition: vpImagePoint.h:262
void setCog(const vpImagePoint &ip)
Definition: vpDot2.h:260
error that can be emited by ViSP classes.
Definition: vpException.h:71
double m11
Definition: vpDot2.h:399
static void displayPoint(const vpImage< unsigned char > &I, const vpImagePoint &ip, const vpColor &color, unsigned int thickness=1)
double getHeight() const
Definition: vpDot2.cpp:630
double getArea() const
Definition: vpDot2.cpp:637
double getEllipsoidShapePrecision() const
Definition: vpDot2.cpp:660
double getRight() const
Definition: vpRect.h:180
double getDistance(const vpDot2 &distantDot) const
Definition: vpDot2.cpp:673
static bool saveMatrix(const std::string &filename, const vpArray2D< double > &M, bool binary=false, const char *header="")
Definition: vpMatrix.h:748
static const vpColor green
Definition: vpColor.h:220
This tracker is meant to track a blob (connex pixels with same gray level) on a vpImage.
Definition: vpDot2.h:126
double m01
Definition: vpDot2.h:391
static void flush(const vpImage< unsigned char > &I)
double get_j() const
Definition: vpImagePoint.h:214
double getSizePrecision() const
Definition: vpDot2.cpp:651
static const vpColor red
Definition: vpColor.h:217
Class that defines what is a feature generic tracker.
Definition: vpTracker.h:64
static Type maximum(const Type &a, const Type &b)
Definition: vpMath.h:145
vpImagePoint getCog() const
Definition: vpDot2.h:180
friend VISP_EXPORT std::ostream & operator<<(std::ostream &os, vpDot2 &d)
Definition: vpDot2.cpp:2486
void setGraphicsThickness(unsigned int t)
Definition: vpDot2.h:321
double getBottom() const
Definition: vpRect.h:98
void setGrayLevelPrecision(const double &grayLevelPrecision)
Definition: vpDot2.cpp:735
Error that can be emited by the vpTracker class and its derivates.
double mu11
Definition: vpDot2.h:424
double getMaxSizeSearchDistancePrecision() const
Definition: vpDot2.cpp:668
double m20
Definition: vpDot2.h:406
#define vpTRACE
Definition: vpDebug.h:416
static double sqr(double x)
Definition: vpMath.h:116
static void display(const vpImage< unsigned char > &I)
void display(const vpImage< unsigned char > &I, vpColor color=vpColor::red, unsigned int thickness=1) const
Definition: vpDot2.cpp:212
unsigned int getGrayLevelMin() const
Definition: vpDot2.h:220
void setArea(const double &area)
Definition: vpDot2.cpp:716
static void displayRectangle(const vpImage< unsigned char > &I, const vpImagePoint &topLeft, unsigned int width, unsigned int height, const vpColor &color, bool fill=false, unsigned int thickness=1)
unsigned int getRows() const
Definition: vpArray2D.h:289
vpDot2()
Definition: vpDot2.cpp:104
void track(const vpImage< unsigned char > &I, bool canMakeTheWindowGrow=true)
Definition: vpDot2.cpp:441
void setEllipsoidShapePrecision(const double &ellipsoidShapePrecision)
Definition: vpDot2.cpp:806
void setGrayLevelMin(const unsigned int &min)
Definition: vpDot2.h:334
static void displayCircle(const vpImage< unsigned char > &I, const vpImagePoint &center, unsigned int radius, const vpColor &color, bool fill=false, unsigned int thickness=1)
void setWidth(const double &width)
Definition: vpDot2.cpp:692
static void displayCross(const vpImage< unsigned char > &I, const vpImagePoint &ip, unsigned int size, const vpColor &color, unsigned int thickness=1)
static void trackAndDisplay(vpDot2 dot[], const unsigned int &n, vpImage< unsigned char > &I, std::vector< vpImagePoint > &cogs, vpImagePoint *cogStar=NULL)
Definition: vpDot2.cpp:2407
void set_v(double v)
Definition: vpImagePoint.h:236
void setSizePrecision(const double &sizePrecision)
Definition: vpDot2.cpp:763
void initTracking(const vpImage< unsigned char > &I, unsigned int size=0)
Definition: vpDot2.cpp:253
static bool checkFilename(const std::string &filename)
Definition: vpIoTools.cpp:640
void setHeight(const double &height)
Definition: vpDot2.cpp:704
double m10
Definition: vpDot2.h:383
#define vpDEBUG_TRACE
Definition: vpDebug.h:487
unsigned int getHeight() const
Definition: vpImage.h:188
double mu20
Definition: vpDot2.h:429
void setComputeMoments(bool activate)
Definition: vpDot2.h:276
Defines a rectangle in the plane.
Definition: vpRect.h:79
double getMeanGrayLevel() const
Definition: vpDot2.h:234
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:87
double m00
Definition: vpDot2.h:375
unsigned int getGrayLevelMax() const
Definition: vpDot2.h:226
static const vpColor purple
Definition: vpColor.h:228
void setRect(double l, double t, double w, double h)
Definition: vpRect.h:334
double getLeft() const
Definition: vpRect.h:174
static vpMatrix defineDots(vpDot2 dot[], const unsigned int &n, const std::string &dotFile, vpImage< unsigned char > &I, vpColor col=vpColor::blue, bool trackDot=true)
Definition: vpDot2.cpp:2309
static bool loadMatrix(const std::string &filename, vpArray2D< double > &M, bool binary=false, char *header=NULL)
Definition: vpMatrix.h:713
static void displayDotLine(const vpImage< unsigned char > &I, const vpImagePoint &ip1, const vpImagePoint &ip2, const vpColor &color, unsigned int thickness=1)
virtual ~vpDot2()
Definition: vpDot2.cpp:198
static const vpColor blue
Definition: vpColor.h:223