Visual Servoing Platform  version 3.2.0 under development (2019-01-22)
vpMbtDistanceKltPoints.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See http://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * Klt polygon, containing points of interest.
33  *
34  * Authors:
35  * Romain Tallonneau
36  * Aurelien Yol
37  *
38  *****************************************************************************/
39 
40 #include <visp3/core/vpPolygon.h>
41 #include <visp3/mbt/vpMbtDistanceKltPoints.h>
42 #include <visp3/me/vpMeTracker.h>
43 
44 #if defined(VISP_HAVE_MODULE_KLT) && (defined(VISP_HAVE_OPENCV) && (VISP_HAVE_OPENCV_VERSION >= 0x020100))
45 
46 #if defined(VISP_HAVE_CLIPPER)
47 #include <clipper.hpp> // clipper private library
48 #endif
49 
50 #if defined(__APPLE__) && defined(__MACH__) // Apple OSX and iOS (Darwin)
51 #include <TargetConditionals.h> // To detect OSX or IOS using TARGET_OS_IPHONE or TARGET_OS_IOS macro
52 #endif
53 
59  : H(), N(), N_cur(), invd0(1.), cRc0_0n(), initPoints(std::map<int, vpImagePoint>()),
60  curPoints(std::map<int, vpImagePoint>()), curPointsInd(std::map<int, int>()), nbPointsCur(0), nbPointsInit(0),
61  minNbPoint(4), enoughPoints(false), dt(1.), d0(1.), cam(), isTrackedKltPoints(true), polygon(NULL),
62  hiddenface(NULL), useScanLine(false)
63 {
64 }
65 
71 
80 void vpMbtDistanceKltPoints::init(const vpKltOpencv &_tracker, const vpImage<bool> *mask)
81 {
82  // extract ids of the points in the face
83  nbPointsInit = 0;
84  nbPointsCur = 0;
85  initPoints = std::map<int, vpImagePoint>();
86  curPoints = std::map<int, vpImagePoint>();
87  curPointsInd = std::map<int, int>();
88  std::vector<vpImagePoint> roi;
89  polygon->getRoiClipped(cam, roi);
90 
91  for (unsigned int i = 0; i < static_cast<unsigned int>(_tracker.getNbFeatures()); i++) {
92  long id;
93  float x_tmp, y_tmp;
94  _tracker.getFeature((int)i, id, x_tmp, y_tmp);
95 
96  bool add = false;
97 
98  // Add points inside visibility mask only
99  if (vpMeTracker::inMask(mask, (unsigned int) y_tmp, (unsigned int) x_tmp)) {
100  if (useScanLine) {
101  if ((unsigned int)y_tmp < hiddenface->getMbScanLineRenderer().getPrimitiveIDs().getHeight() &&
102  (unsigned int)x_tmp < hiddenface->getMbScanLineRenderer().getPrimitiveIDs().getWidth() &&
103  hiddenface->getMbScanLineRenderer().getPrimitiveIDs()[(unsigned int)y_tmp][(unsigned int)x_tmp] ==
104  polygon->getIndex())
105  add = true;
106  }
107  else if (vpPolygon::isInside(roi, y_tmp, x_tmp)) {
108  add = true;
109  }
110  }
111 
112  if (add) {
113 #if TARGET_OS_IPHONE
114  initPoints[(int)id] = vpImagePoint(y_tmp, x_tmp);
115  curPoints[(int)id] = vpImagePoint(y_tmp, x_tmp);
116  curPointsInd[(int)id] = (int)i;
117 #else
118  initPoints[id] = vpImagePoint(y_tmp, x_tmp);
119  curPoints[id] = vpImagePoint(y_tmp, x_tmp);
120  curPointsInd[id] = (int)i;
121 #endif
122  }
123  }
124 
125  nbPointsInit = (unsigned int)initPoints.size();
126  nbPointsCur = (unsigned int)curPoints.size();
127 
128  if (nbPointsCur >= minNbPoint)
129  enoughPoints = true;
130  else
131  enoughPoints = false;
132 
133  // initialisation of the value for the computation in SE3
135 
136  d0 = plan.getD();
137  N = plan.getNormal();
138 
139  N.normalize();
140  N_cur = N;
141  invd0 = 1.0 / d0;
142 }
143 
154 {
155  long id;
156  float x, y;
157  nbPointsCur = 0;
158  curPoints = std::map<int, vpImagePoint>();
159  curPointsInd = std::map<int, int>();
160 
161  for (unsigned int i = 0; i < static_cast<unsigned int>(_tracker.getNbFeatures()); i++) {
162  _tracker.getFeature((int)i, id, x, y);
163  if (isTrackedFeature((int)id) && vpMeTracker::inMask(mask, (unsigned int) y, (unsigned int) x)) {
164 #if TARGET_OS_IPHONE
165  curPoints[(int)id] = vpImagePoint(static_cast<double>(y), static_cast<double>(x));
166  curPointsInd[(int)id] = (int)i;
167 #else
168  curPoints[id] = vpImagePoint(static_cast<double>(y), static_cast<double>(x));
169  curPointsInd[id] = (int)i;
170 #endif
171  }
172  }
173 
174  nbPointsCur = (unsigned int)curPoints.size();
175 
176  if (nbPointsCur >= minNbPoint)
177  enoughPoints = true;
178  else
179  enoughPoints = false;
180 
181  return nbPointsCur;
182 }
183 
195 {
196  unsigned int index_ = 0;
197 
198  std::map<int, vpImagePoint>::const_iterator iter = curPoints.begin();
199  for (; iter != curPoints.end(); ++iter) {
200  int id(iter->first);
201  double i_cur(iter->second.get_i()), j_cur(iter->second.get_j());
202 
203  double x_cur(0), y_cur(0);
204  vpPixelMeterConversion::convertPoint(cam, j_cur, i_cur, x_cur, y_cur);
205 
206  vpImagePoint iP0 = initPoints[id];
207  double x0(0), y0(0);
208  vpPixelMeterConversion::convertPoint(cam, iP0, x0, y0);
209 
210  double x0_transform,
211  y0_transform; // equivalent x and y in the first image (reference)
212  computeP_mu_t(x0, y0, x0_transform, y0_transform, H);
213 
214  double invZ = compute_1_over_Z(x_cur, y_cur);
215 
216  _J[2 * index_][0] = -invZ;
217  _J[2 * index_][1] = 0;
218  _J[2 * index_][2] = x_cur * invZ;
219  _J[2 * index_][3] = x_cur * y_cur;
220  _J[2 * index_][4] = -(1 + x_cur * x_cur);
221  _J[2 * index_][5] = y_cur;
222 
223  _J[2 * index_ + 1][0] = 0;
224  _J[2 * index_ + 1][1] = -invZ;
225  _J[2 * index_ + 1][2] = y_cur * invZ;
226  _J[2 * index_ + 1][3] = (1 + y_cur * y_cur);
227  _J[2 * index_ + 1][4] = -y_cur * x_cur;
228  _J[2 * index_ + 1][5] = -x_cur;
229 
230  _R[2 * index_] = (x0_transform - x_cur);
231  _R[2 * index_ + 1] = (y0_transform - y_cur);
232  index_++;
233  }
234 }
235 
236 double vpMbtDistanceKltPoints::compute_1_over_Z(const double x, const double y)
237 {
238  double num = cRc0_0n[0] * x + cRc0_0n[1] * y + cRc0_0n[2];
239  double den = -(d0 - dt);
240  return num / den;
241 }
242 
255 inline void vpMbtDistanceKltPoints::computeP_mu_t(const double x_in, const double y_in, double &x_out, double &y_out,
256  const vpMatrix &_cHc0)
257 {
258  double p_mu_t_2 = x_in * _cHc0[2][0] + y_in * _cHc0[2][1] + _cHc0[2][2];
259 
260  if (fabs(p_mu_t_2) < std::numeric_limits<double>::epsilon()) {
261  x_out = 0.0;
262  y_out = 0.0;
263  throw vpException(vpException::divideByZeroError, "the depth of the point is calculated to zero");
264  }
265 
266  x_out = (x_in * _cHc0[0][0] + y_in * _cHc0[0][1] + _cHc0[0][2]) / p_mu_t_2;
267  y_out = (x_in * _cHc0[1][0] + y_in * _cHc0[1][1] + _cHc0[1][2]) / p_mu_t_2;
268 }
269 
284 {
285  vpRotationMatrix cRc0;
286  vpTranslationVector ctransc0;
287 
288  _cTc0.extract(cRc0);
289  _cTc0.extract(ctransc0);
290  vpMatrix cHc0 = _cHc0.convert();
291 
292  // vpGEMM(cRc0, 1.0, invd0, cRc0, -1.0, _cHc0, VP_GEMM_A_T);
293  vpGEMM(ctransc0, N, -invd0, cRc0, 1.0, cHc0, VP_GEMM_B_T);
294  cHc0 /= cHc0[2][2];
295 
296  H = cHc0;
297 
298  // vpQuaternionVector NQuat(N[0], N[1], N[2], 0.0);
299  // vpQuaternionVector RotQuat(cRc0);
300  // vpQuaternionVector RotQuatConj(-RotQuat.x(), -RotQuat.y(),
301  // -RotQuat.z(), RotQuat.w()); vpQuaternionVector partial = RotQuat *
302  // NQuat; vpQuaternionVector resQuat = (partial * RotQuatConj);
303  //
304  // cRc0_0n = vpColVector(3);
305  // cRc0_0n[0] = resQuat.x();
306  // cRc0_0n[1] = resQuat.y();
307  // cRc0_0n[2] = resQuat.z();
308 
309  cRc0_0n = cRc0 * N;
310 
311  // vpPlane p(corners[0], corners[1], corners[2]);
312  // vpColVector Ncur = p.getNormal();
313  // Ncur.normalize();
314  N_cur = cRc0_0n;
315  dt = 0.0;
316  for (unsigned int i = 0; i < 3; i += 1) {
317  dt += ctransc0[i] * (N_cur[i]);
318  }
319 }
320 
328 bool vpMbtDistanceKltPoints::isTrackedFeature(const int _id)
329 {
330  // std::map<int, vpImagePoint>::const_iterator iter = initPoints.begin();
331  // while(iter != initPoints.end()){
332  // if(iter->first == _id){
333  // return true;
334  // }
335  // iter++;
336  // }
337 
338  std::map<int, vpImagePoint>::iterator iter = initPoints.find(_id);
339  if (iter != initPoints.end())
340  return true;
341 
342  return false;
343 }
344 
355 #if (VISP_HAVE_OPENCV_VERSION >= 0x020408)
356  cv::Mat &mask,
357 #else
358  IplImage *mask,
359 #endif
360  unsigned char nb, unsigned int shiftBorder)
361 {
362 #if (VISP_HAVE_OPENCV_VERSION >= 0x020408)
363  int width = mask.cols;
364  int height = mask.rows;
365 #else
366  int width = mask->width;
367  int height = mask->height;
368 #endif
369 
370  int i_min, i_max, j_min, j_max;
371  std::vector<vpImagePoint> roi;
372  polygon->getRoiClipped(cam, roi);
373 
374  double shiftBorder_d = (double)shiftBorder;
375 
376 #if defined(VISP_HAVE_CLIPPER)
377  std::vector<vpImagePoint> roi_offset;
378 
379  ClipperLib::Path path;
380  for (std::vector<vpImagePoint>::const_iterator it = roi.begin(); it != roi.end(); ++it) {
381  path.push_back(ClipperLib::IntPoint((ClipperLib::cInt)it->get_u(), (ClipperLib::cInt)it->get_v()));
382  }
383 
384  ClipperLib::Paths solution;
385  ClipperLib::ClipperOffset co;
386  co.AddPath(path, ClipperLib::jtRound, ClipperLib::etClosedPolygon);
387  co.Execute(solution, -shiftBorder_d);
388 
389  // Keep biggest polygon by area
390  if (!solution.empty()) {
391  size_t index_max = 0;
392 
393  if (solution.size() > 1) {
394  double max_area = 0;
395  vpPolygon polygon_area;
396 
397  for (size_t i = 0; i < solution.size(); i++) {
398  std::vector<vpImagePoint> corners;
399 
400  for (size_t j = 0; j < solution[i].size(); j++) {
401  corners.push_back(vpImagePoint((double)(solution[i][j].Y), (double)(solution[i][j].X)));
402  }
403 
404  polygon_area.buildFrom(corners);
405  if (polygon_area.getArea() > max_area) {
406  max_area = polygon_area.getArea();
407  index_max = i;
408  }
409  }
410  }
411 
412  for (size_t i = 0; i < solution[index_max].size(); i++) {
413  roi_offset.push_back(vpImagePoint((double)(solution[index_max][i].Y), (double)(solution[index_max][i].X)));
414  }
415  } else {
416  roi_offset = roi;
417  }
418 
419  vpPolygon polygon_test(roi_offset);
420  vpImagePoint imPt;
421 #endif
422 
423 #if defined(VISP_HAVE_CLIPPER)
424  vpPolygon3D::getMinMaxRoi(roi_offset, i_min, i_max, j_min, j_max);
425 #else
426  vpPolygon3D::getMinMaxRoi(roi, i_min, i_max, j_min, j_max);
427 #endif
428 
429  /* check image boundaries */
430  if (i_min > height) { // underflow
431  i_min = 0;
432  }
433  if (i_max > height) {
434  i_max = height;
435  }
436  if (j_min > width) { // underflow
437  j_min = 0;
438  }
439  if (j_max > width) {
440  j_max = width;
441  }
442 
443 #if (VISP_HAVE_OPENCV_VERSION >= 0x020408)
444  for (int i = i_min; i < i_max; i++) {
445  double i_d = (double)i;
446 
447  for (int j = j_min; j < j_max; j++) {
448  double j_d = (double)j;
449 
450 #if defined(VISP_HAVE_CLIPPER)
451  imPt.set_ij(i_d, j_d);
452  if (polygon_test.isInside(imPt)) {
453  mask.ptr<uchar>(i)[j] = nb;
454  }
455 #else
456  if (shiftBorder != 0) {
457  if (vpPolygon::isInside(roi, i_d, j_d) && vpPolygon::isInside(roi, i_d + shiftBorder_d, j_d + shiftBorder_d) &&
458  vpPolygon::isInside(roi, i_d - shiftBorder_d, j_d + shiftBorder_d) &&
459  vpPolygon::isInside(roi, i_d + shiftBorder_d, j_d - shiftBorder_d) &&
460  vpPolygon::isInside(roi, i_d - shiftBorder_d, j_d - shiftBorder_d)) {
461  mask.at<unsigned char>(i, j) = nb;
462  }
463  } else {
464  if (vpPolygon::isInside(roi, i, j)) {
465  mask.at<unsigned char>(i, j) = nb;
466  }
467  }
468 #endif
469  }
470  }
471 #else
472  unsigned char *ptrData = (unsigned char *)mask->imageData + i_min * mask->widthStep + j_min;
473  for (int i = i_min; i < i_max; i++) {
474  double i_d = (double)i;
475  for (int j = j_min; j < j_max; j++) {
476  double j_d = (double)j;
477  if (shiftBorder != 0) {
478  if (vpPolygon::isInside(roi, i_d, j_d) && vpPolygon::isInside(roi, i_d + shiftBorder_d, j_d + shiftBorder_d) &&
479  vpPolygon::isInside(roi, i_d - shiftBorder_d, j_d + shiftBorder_d) &&
480  vpPolygon::isInside(roi, i_d + shiftBorder_d, j_d - shiftBorder_d) &&
481  vpPolygon::isInside(roi, i_d - shiftBorder_d, j_d - shiftBorder_d)) {
482  *(ptrData++) = nb;
483  } else {
484  ptrData++;
485  }
486  } else {
487  if (vpPolygon::isInside(roi, i, j)) {
488  *(ptrData++) = nb;
489  } else {
490  ptrData++;
491  }
492  }
493  }
494  ptrData += mask->widthStep - j_max + j_min;
495  }
496 #endif
497 }
498 
507 void vpMbtDistanceKltPoints::removeOutliers(const vpColVector &_w, const double &threshold_outlier)
508 {
509  std::map<int, vpImagePoint> tmp;
510  std::map<int, int> tmp2;
511  unsigned int nbSupp = 0;
512  unsigned int k = 0;
513 
514  nbPointsCur = 0;
515  std::map<int, vpImagePoint>::const_iterator iter = curPoints.begin();
516  for (; iter != curPoints.end(); ++iter) {
517  if (_w[k] > threshold_outlier && _w[k + 1] > threshold_outlier) {
518  // if(_w[k] > threshold_outlier || _w[k+1] > threshold_outlier){
519  tmp[iter->first] = vpImagePoint(iter->second.get_i(), iter->second.get_j());
520  tmp2[iter->first] = curPointsInd[iter->first];
521  nbPointsCur++;
522  } else {
523  nbSupp++;
524  initPoints.erase(iter->first);
525  }
526 
527  k += 2;
528  }
529 
530  if (nbSupp != 0) {
531  curPoints = tmp;
532  curPointsInd = tmp2;
533  if (nbPointsCur >= minNbPoint)
534  enoughPoints = true;
535  else
536  enoughPoints = false;
537  }
538 }
539 
546 {
547  std::map<int, vpImagePoint>::const_iterator iter = curPoints.begin();
548  for (; iter != curPoints.end(); ++iter) {
549  int id(iter->first);
550  vpImagePoint iP;
551  iP.set_i(static_cast<double>(iter->second.get_i()));
552  iP.set_j(static_cast<double>(iter->second.get_j()));
553 
555 
556  iP.set_i(vpMath::round(iP.get_i() + 7));
557  iP.set_j(vpMath::round(iP.get_j() + 7));
558  std::stringstream ss;
559  ss << id;
560  vpDisplay::displayText(_I, iP, ss.str(), vpColor::red);
561  }
562 }
563 
570 {
571  std::map<int, vpImagePoint>::const_iterator iter = curPoints.begin();
572  for (; iter != curPoints.end(); ++iter) {
573  int id(iter->first);
574  vpImagePoint iP;
575  iP.set_i(static_cast<double>(iter->second.get_i()));
576  iP.set_j(static_cast<double>(iter->second.get_j()));
577 
579 
580  iP.set_i(vpMath::round(iP.get_i() + 7));
581  iP.set_j(vpMath::round(iP.get_j() + 7));
582  std::stringstream ss;
583  ss << id;
584  vpDisplay::displayText(_I, iP, ss.str(), vpColor::red);
585  }
586 }
587 
589  const vpCameraParameters &camera, const vpColor &col, const unsigned int thickness,
590  const bool displayFullModel)
591 {
592  if ((polygon->isVisible() && isTrackedKltPoints) || displayFullModel) {
593  std::vector<std::pair<vpPoint, unsigned int> > roi;
595 
596  for (unsigned int j = 0; j < roi.size(); j += 1) {
597  if (((roi[(j + 1) % roi.size()].second & roi[j].second & vpPolygon3D::NEAR_CLIPPING) == 0) &&
598  ((roi[(j + 1) % roi.size()].second & roi[j].second & vpPolygon3D::FAR_CLIPPING) == 0) &&
599  ((roi[(j + 1) % roi.size()].second & roi[j].second & vpPolygon3D::DOWN_CLIPPING) == 0) &&
600  ((roi[(j + 1) % roi.size()].second & roi[j].second & vpPolygon3D::UP_CLIPPING) == 0) &&
601  ((roi[(j + 1) % roi.size()].second & roi[j].second & vpPolygon3D::LEFT_CLIPPING) == 0) &&
602  ((roi[(j + 1) % roi.size()].second & roi[j].second & vpPolygon3D::RIGHT_CLIPPING) == 0)) {
603 
604  vpImagePoint ip1, ip2;
605  std::vector<std::pair<vpPoint, vpPoint> > linesLst;
606 
607  if (useScanLine && !displayFullModel)
608  hiddenface->computeScanLineQuery(roi[j].first, roi[(j + 1) % roi.size()].first, linesLst, true);
609  else
610  linesLst.push_back(std::make_pair(roi[j].first, roi[(j + 1) % roi.size()].first));
611 
612  for (unsigned int i = 0; i < linesLst.size(); i++) {
613  linesLst[i].first.project();
614  linesLst[i].second.project();
615  vpMeterPixelConversion::convertPoint(camera, linesLst[i].first.get_x(), linesLst[i].first.get_y(), ip1);
616  vpMeterPixelConversion::convertPoint(camera, linesLst[i].second.get_x(), linesLst[i].second.get_y(), ip2);
617 
618  vpDisplay::displayLine(I, ip1, ip2, col, thickness);
619  }
620  }
621  }
622  }
623 }
624 
626  const vpCameraParameters &camera, const vpColor &col, const unsigned int thickness,
627  const bool displayFullModel)
628 {
629  if ((polygon->isVisible() && isTrackedKltPoints) || displayFullModel) {
630  std::vector<std::pair<vpPoint, unsigned int> > roi;
632 
633  for (unsigned int j = 0; j < roi.size(); j += 1) {
634  if (((roi[(j + 1) % roi.size()].second & roi[j].second & vpPolygon3D::NEAR_CLIPPING) == 0) &&
635  ((roi[(j + 1) % roi.size()].second & roi[j].second & vpPolygon3D::FAR_CLIPPING) == 0) &&
636  ((roi[(j + 1) % roi.size()].second & roi[j].second & vpPolygon3D::DOWN_CLIPPING) == 0) &&
637  ((roi[(j + 1) % roi.size()].second & roi[j].second & vpPolygon3D::UP_CLIPPING) == 0) &&
638  ((roi[(j + 1) % roi.size()].second & roi[j].second & vpPolygon3D::LEFT_CLIPPING) == 0) &&
639  ((roi[(j + 1) % roi.size()].second & roi[j].second & vpPolygon3D::RIGHT_CLIPPING) == 0)) {
640 
641  vpImagePoint ip1, ip2;
642  std::vector<std::pair<vpPoint, vpPoint> > linesLst;
643 
644  if (useScanLine && !displayFullModel)
645  hiddenface->computeScanLineQuery(roi[j].first, roi[(j + 1) % roi.size()].first, linesLst, true);
646  else
647  linesLst.push_back(std::make_pair(roi[j].first, roi[(j + 1) % roi.size()].first));
648 
649  for (unsigned int i = 0; i < linesLst.size(); i++) {
650  linesLst[i].first.project();
651  linesLst[i].second.project();
652  vpMeterPixelConversion::convertPoint(camera, linesLst[i].first.get_x(), linesLst[i].first.get_y(), ip1);
653  vpMeterPixelConversion::convertPoint(camera, linesLst[i].second.get_x(), linesLst[i].second.get_y(), ip2);
654 
655  vpDisplay::displayLine(I, ip1, ip2, col, thickness);
656  }
657  }
658  }
659  }
660 }
661 
662 #elif !defined(VISP_BUILD_SHARED_LIBS)
663 // Work arround to avoid warning: libvisp_mbt.a(vpMbtDistanceKltPoints.cpp.o)
664 // has no symbols
665 void dummy_vpMbtDistanceKltPoints(){};
666 #endif
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:104
void getRoiClipped(const vpCameraParameters &cam, std::vector< vpImagePoint > &roi)
double get_i() const
Definition: vpImagePoint.h:204
void removeOutliers(const vpColVector &weight, const double &threshold_outlier)
Implementation of an homogeneous matrix and operations on such kind of matrices.
static void convertPoint(const vpCameraParameters &cam, const double &x, const double &y, double &u, double &v)
Class to define colors available for display functionnalities.
Definition: vpColor.h:120
vpMbHiddenFaces< vpMbtPolygon > * hiddenface
Pointer to the list of faces.
static void displayText(const vpImage< unsigned char > &I, const vpImagePoint &ip, const std::string &s, const vpColor &color)
error that can be emited by ViSP classes.
Definition: vpException.h:71
vpMbScanLine & getMbScanLineRenderer()
static void convertPoint(const vpCameraParameters &cam, const double &u, const double &v, double &x, double &y)
static int round(const double x)
Definition: vpMath.h:235
double get_j() const
Definition: vpImagePoint.h:215
static void getMinMaxRoi(const std::vector< vpImagePoint > &roi, int &i_min, int &i_max, int &j_min, int &j_max)
static bool inMask(const vpImage< bool > *mask, const unsigned int i, const unsigned int j)
static const vpColor red
Definition: vpColor.h:180
Implementation of a rotation matrix and operations on such kind of matrices.
bool isInside(const vpImagePoint &iP, const PointInPolygonMethod &method=PnPolyRayCasting) const
Definition: vpPolygon.cpp:317
Implementation of an homography and operations on homographies.
Definition: vpHomography.h:174
Defines a generic 2D polygon.
Definition: vpPolygon.h:103
void set_i(const double ii)
Definition: vpImagePoint.h:167
vpColVector & normalize()
vpPoint & getPoint(const unsigned int _index)
void displayPrimitive(const vpImage< unsigned char > &_I)
int getIndex() const
Definition: vpMbtPolygon.h:101
void getPolygonClipped(std::vector< std::pair< vpPoint, unsigned int > > &poly)
Generic class defining intrinsic camera parameters.
double getArea() const
Definition: vpPolygon.h:161
void extract(vpRotationMatrix &R) const
virtual bool isVisible(const vpHomogeneousMatrix &cMo, const double alpha, const bool &modulo=false, const vpCameraParameters &cam=vpCameraParameters(), const vpImage< unsigned char > &I=vpImage< unsigned char >())
void init(const vpKltOpencv &_tracker, const vpImage< bool > *mask=NULL)
void computeHomography(const vpHomogeneousMatrix &_cTc0, vpHomography &cHc0)
void set_j(const double jj)
Definition: vpImagePoint.h:178
static void displayCross(const vpImage< unsigned char > &I, const vpImagePoint &ip, unsigned int size, const vpColor &color, unsigned int thickness=1)
void computeScanLineQuery(const vpPoint &a, const vpPoint &b, std::vector< std::pair< vpPoint, vpPoint > > &lines, const bool &displayResults=false)
Implementation of column vector and the associated operations.
Definition: vpColVector.h:72
Wrapper for the KLT (Kanade-Lucas-Tomasi) feature tracker implemented in OpenCV. Thus to enable this ...
Definition: vpKltOpencv.h:78
void getFeature(const int &index, long &id, float &x, float &y) const
int getNbFeatures() const
Get the number of current features.
Definition: vpKltOpencv.h:120
vpMatrix convert() const
vpMbtPolygon * polygon
Pointer to the polygon that define a face.
void display(const vpImage< unsigned char > &I, const vpHomogeneousMatrix &cMo, const vpCameraParameters &cam, const vpColor &col, const unsigned int thickness=1, const bool displayFullModel=false)
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:88
static void displayLine(const vpImage< unsigned char > &I, const vpImagePoint &ip1, const vpImagePoint &ip2, const vpColor &color, unsigned int thickness=1)
This class defines the container for a plane geometrical structure.
Definition: vpPlane.h:58
unsigned int computeNbDetectedCurrent(const vpKltOpencv &_tracker, const vpImage< bool > *mask=NULL)
Class that consider the case of a translation vector.
void computeInteractionMatrixAndResidu(vpColVector &_R, vpMatrix &_J)
void buildFrom(const std::vector< vpImagePoint > &corners)
Definition: vpPolygon.cpp:139
void set_ij(const double ii, const double jj)
Definition: vpImagePoint.h:189
bool useScanLine
Use scanline rendering.
void updateMask(cv::Mat &mask, unsigned char _nb=255, unsigned int _shiftBorder=0)