38 #ifndef _vpKeyPoint_h_ 39 #define _vpKeyPoint_h_ 51 #include <visp3/core/vpConfig.h> 52 #include <visp3/core/vpDisplay.h> 53 #include <visp3/core/vpImageConvert.h> 54 #include <visp3/core/vpPixelMeterConversion.h> 55 #include <visp3/core/vpPlane.h> 56 #include <visp3/core/vpPoint.h> 57 #include <visp3/vision/vpBasicKeyPoint.h> 58 #include <visp3/vision/vpPose.h> 59 #ifdef VISP_HAVE_MODULE_IO 60 # include <visp3/io/vpImageIo.h> 62 #include <visp3/core/vpConvert.h> 63 #include <visp3/core/vpCylinder.h> 64 #include <visp3/core/vpMeterPixelConversion.h> 65 #include <visp3/core/vpPolygon.h> 66 #include <visp3/vision/vpXmlConfigParserKeyPoint.h> 69 #if (VISP_HAVE_OPENCV_VERSION >= 0x020101) 71 # include <opencv2/calib3d/calib3d.hpp> 72 # include <opencv2/features2d/features2d.hpp> 73 # include <opencv2/imgproc/imgproc.hpp> 75 # if (VISP_HAVE_OPENCV_VERSION >= 0x040000) // Require opencv >= 4.0.0 76 # include <opencv2/imgproc/imgproc_c.h> 77 # include <opencv2/imgproc.hpp> 80 # if defined(VISP_HAVE_OPENCV_XFEATURES2D) // OpenCV >= 3.0.0 81 # include <opencv2/xfeatures2d.hpp> 82 # elif defined(VISP_HAVE_OPENCV_NONFREE) && (VISP_HAVE_OPENCV_VERSION >= 0x020400) && \ 83 (VISP_HAVE_OPENCV_VERSION < 0x030000) 84 # include <opencv2/nonfree/nonfree.hpp> 87 # ifdef VISP_HAVE_XML2 88 # include <libxml/xmlwriter.h> 234 constantFactorDistanceThreshold,
236 stdDistanceThreshold,
238 ratioDistanceThreshold,
241 stdAndRatioDistanceThreshold,
265 #if (VISP_HAVE_OPENCV_VERSION >= 0x020403) 272 #if (VISP_HAVE_OPENCV_VERSION < 0x030000) || (defined(VISP_HAVE_OPENCV_XFEATURES2D)) 275 #if defined(VISP_HAVE_OPENCV_NONFREE) || defined(VISP_HAVE_OPENCV_XFEATURES2D) 279 #if (VISP_HAVE_OPENCV_VERSION >= 0x030000) 284 #if (VISP_HAVE_OPENCV_VERSION >= 0x030100) && defined(VISP_HAVE_OPENCV_XFEATURES2D) 293 #if (VISP_HAVE_OPENCV_VERSION >= 0x020403) 296 #if (VISP_HAVE_OPENCV_VERSION < 0x030000) || (defined(VISP_HAVE_OPENCV_XFEATURES2D)) 300 #if defined(VISP_HAVE_OPENCV_NONFREE) || defined(VISP_HAVE_OPENCV_XFEATURES2D) 304 #if (VISP_HAVE_OPENCV_VERSION >= 0x030000) 307 #if defined(VISP_HAVE_OPENCV_XFEATURES2D) 312 #if (VISP_HAVE_OPENCV_VERSION >= 0x030200) && defined(VISP_HAVE_OPENCV_XFEATURES2D) 314 DESCRIPTOR_BoostDesc,
321 const std::string &matcherName,
const vpFilterMatchingType &filterType = ratioDistanceThreshold);
322 vpKeyPoint(
const std::string &detectorName =
"ORB",
const std::string &extractorName =
"ORB",
323 const std::string &matcherName =
"BruteForce-Hamming",
325 vpKeyPoint(
const std::vector<std::string> &detectorNames,
const std::vector<std::string> &extractorNames,
326 const std::string &matcherName =
"BruteForce",
331 const unsigned int width);
335 std::vector<cv::Point3f> &points3f,
const bool append =
false,
const int class_id = -1);
337 const cv::Mat &trainDescriptors,
const std::vector<cv::Point3f> &points3f,
338 const bool append =
false,
const int class_id = -1);
340 static void compute3D(
const cv::KeyPoint &candidate,
const std::vector<vpPoint> &roi,
const vpCameraParameters &cam,
347 std::vector<cv::KeyPoint> &candidates,
348 const std::vector<vpPolygon> &polygons,
349 const std::vector<std::vector<vpPoint> > &roisPt,
350 std::vector<cv::Point3f> &points, cv::Mat *descriptors = NULL);
353 std::vector<vpImagePoint> &candidates,
354 const std::vector<vpPolygon> &polygons,
355 const std::vector<std::vector<vpPoint> > &roisPt,
356 std::vector<vpPoint> &points, cv::Mat *descriptors = NULL);
360 std::vector<cv::KeyPoint> &candidates,
const std::vector<vpCylinder> &cylinders,
361 const std::vector<std::vector<std::vector<vpImagePoint> > > &vectorOfCylinderRois,
362 std::vector<cv::Point3f> &points, cv::Mat *descriptors = NULL);
366 std::vector<vpImagePoint> &candidates,
const std::vector<vpCylinder> &cylinders,
367 const std::vector<std::vector<std::vector<vpImagePoint> > > &vectorOfCylinderRois,
368 std::vector<vpPoint> &points, cv::Mat *descriptors = NULL);
370 bool computePose(
const std::vector<cv::Point2f> &imagePoints,
const std::vector<cv::Point3f> &objectPoints,
374 bool computePose(
const std::vector<vpPoint> &objectVpPoints,
vpHomogeneousMatrix &cMo, std::vector<vpPoint> &inliers,
377 bool computePose(
const std::vector<vpPoint> &objectVpPoints,
vpHomogeneousMatrix &cMo, std::vector<vpPoint> &inliers,
378 std::vector<unsigned int> &inlierIndex,
double &elapsedTime,
387 void detect(
const cv::Mat &matImg, std::vector<cv::KeyPoint> &keyPoints,
const cv::Mat &mask = cv::Mat());
390 void detect(
const cv::Mat &matImg, std::vector<cv::KeyPoint> &keyPoints,
double &elapsedTime,
391 const cv::Mat &mask = cv::Mat());
393 void detectExtractAffine(
const vpImage<unsigned char> &I, std::vector<std::vector<cv::KeyPoint> > &listOfKeypoints,
394 std::vector<cv::Mat> &listOfDescriptors,
403 const std::vector<vpImagePoint> &ransacInliers = std::vector<vpImagePoint>(),
404 unsigned int crossSize = 3,
unsigned int lineThickness = 1);
407 std::vector<cv::Point3f> *trainPoints = NULL);
408 void extract(
const cv::Mat &matImg, std::vector<cv::KeyPoint> &keyPoints, cv::Mat &descriptors,
409 std::vector<cv::Point3f> *trainPoints = NULL);
411 double &elapsedTime, std::vector<cv::Point3f> *trainPoints = NULL);
412 void extract(
const cv::Mat &matImg, std::vector<cv::KeyPoint> &keyPoints, cv::Mat &descriptors,
double &elapsedTime,
413 std::vector<cv::Point3f> *trainPoints = NULL);
426 if (!m_computeCovariance) {
427 std::cout <<
"Warning : The covariance matrix has not been computed. " 428 "See setCovarianceComputation() to do it." 433 if (m_computeCovariance && !m_useRansacVVS) {
434 std::cout <<
"Warning : The covariance matrix can only be computed " 435 "with a Virtual Visual Servoing approach." 437 <<
"Use setUseRansacVVS(true) to choose to use a pose " 438 "estimation method based on a Virtual Visual Servoing " 444 return m_covarianceMatrix;
463 std::map<vpFeatureDetectorType, std::string>::const_iterator it_name = m_mapOfDetectorNames.find(type);
464 if (it_name == m_mapOfDetectorNames.end()) {
465 std::cerr <<
"Internal problem with the feature type and the " 466 "corresponding name!" 470 std::map<std::string, cv::Ptr<cv::FeatureDetector> >::const_iterator findDetector =
471 m_detectors.find(it_name->second);
472 if (findDetector != m_detectors.end()) {
473 return findDetector->second;
476 std::cerr <<
"Cannot find: " << it_name->second << std::endl;
477 return cv::Ptr<cv::FeatureDetector>();
487 inline cv::Ptr<cv::FeatureDetector>
getDetector(
const std::string &name)
const 489 std::map<std::string, cv::Ptr<cv::FeatureDetector> >::const_iterator findDetector = m_detectors.find(name);
490 if (findDetector != m_detectors.end()) {
491 return findDetector->second;
494 std::cerr <<
"Cannot find: " << name << std::endl;
495 return cv::Ptr<cv::FeatureDetector>();
501 inline std::map<vpFeatureDetectorType, std::string>
getDetectorNames()
const {
return m_mapOfDetectorNames; }
519 std::map<vpFeatureDescriptorType, std::string>::const_iterator it_name = m_mapOfDescriptorNames.find(type);
520 if (it_name == m_mapOfDescriptorNames.end()) {
521 std::cerr <<
"Internal problem with the feature type and the " 522 "corresponding name!" 526 std::map<std::string, cv::Ptr<cv::DescriptorExtractor> >::const_iterator findExtractor =
527 m_extractors.find(it_name->second);
528 if (findExtractor != m_extractors.end()) {
529 return findExtractor->second;
532 std::cerr <<
"Cannot find: " << it_name->second << std::endl;
533 return cv::Ptr<cv::DescriptorExtractor>();
543 inline cv::Ptr<cv::DescriptorExtractor>
getExtractor(
const std::string &name)
const 545 std::map<std::string, cv::Ptr<cv::DescriptorExtractor> >::const_iterator findExtractor = m_extractors.find(name);
546 if (findExtractor != m_extractors.end()) {
547 return findExtractor->second;
550 std::cerr <<
"Cannot find: " << name << std::endl;
551 return cv::Ptr<cv::DescriptorExtractor>();
557 inline std::map<vpFeatureDescriptorType, std::string>
getExtractorNames()
const {
return m_mapOfDescriptorNames; }
578 inline cv::Ptr<cv::DescriptorMatcher>
getMatcher()
const {
return m_matcher; }
586 inline std::vector<cv::DMatch>
getMatches()
const {
return m_filteredMatches; }
597 std::vector<std::pair<cv::KeyPoint, cv::KeyPoint> > matchQueryToTrainKeyPoints(m_filteredMatches.size());
598 for (
size_t i = 0; i < m_filteredMatches.size(); i++) {
599 matchQueryToTrainKeyPoints.push_back(
600 std::pair<cv::KeyPoint, cv::KeyPoint>(m_queryFilteredKeyPoints[(
size_t)m_filteredMatches[i].queryIdx],
601 m_trainKeyPoints[(
size_t)m_filteredMatches[i].trainIdx]));
603 return matchQueryToTrainKeyPoints;
611 inline unsigned int getNbImages()
const {
return static_cast<unsigned int>(m_mapOfImages.size()); }
613 void getObjectPoints(std::vector<cv::Point3f> &objectPoints)
const;
614 void getObjectPoints(std::vector<vpPoint> &objectPoints)
const;
631 void getQueryKeyPoints(std::vector<cv::KeyPoint> &keyPoints)
const;
632 void getQueryKeyPoints(std::vector<vpImagePoint> &keyPoints)
const;
656 void getTrainKeyPoints(std::vector<cv::KeyPoint> &keyPoints)
const;
657 void getTrainKeyPoints(std::vector<vpImagePoint> &keyPoints)
const;
659 void getTrainPoints(std::vector<cv::Point3f> &points)
const;
660 void getTrainPoints(std::vector<vpPoint> &points)
const;
662 void initMatcher(
const std::string &matcherName);
668 #ifdef VISP_HAVE_XML2 669 void loadConfigFile(
const std::string &configFile);
672 void loadLearningData(
const std::string &filename,
const bool binaryMode =
false,
const bool append =
false);
674 void match(
const cv::Mat &trainDescriptors,
const cv::Mat &queryDescriptors, std::vector<cv::DMatch> &matches,
675 double &elapsedTime);
679 const unsigned int width);
689 const bool isPlanarObject =
true, std::vector<vpImagePoint> *imPts1 = NULL,
690 std::vector<vpImagePoint> *imPts2 = NULL,
double *meanDescriptorDistance = NULL,
691 double *detectionScore = NULL,
const vpRect &rectangle =
vpRect());
694 double &error,
double &elapsedTime,
vpRect &boundingBox,
vpImagePoint ¢erOfGravity,
699 void saveLearningData(
const std::string &filename,
const bool binaryMode =
false,
700 const bool saveTrainingImages =
true);
710 m_computeCovariance = flag;
711 if (!m_useRansacVVS) {
712 std::cout <<
"Warning : The covariance matrix can only be computed " 713 "with a Virtual Visual Servoing approach." 715 <<
"Use setUseRansacVVS(true) to choose to use a pose " 716 "estimation method based on a Virtual " 717 "Visual Servoing approach." 736 m_detectorNames.clear();
737 m_detectorNames.push_back(m_mapOfDetectorNames[detectorType]);
739 initDetector(m_mapOfDetectorNames[detectorType]);
749 m_detectorNames.clear();
750 m_detectorNames.push_back(detectorName);
752 initDetector(detectorName);
755 #if (VISP_HAVE_OPENCV_VERSION >= 0x020400 && VISP_HAVE_OPENCV_VERSION < 0x030000) 764 template <
typename T1,
typename T2,
typename T3>
765 inline void setDetectorParameter(
const T1 detectorName,
const T2 parameterName,
const T3 value)
767 if (m_detectors.find(detectorName) != m_detectors.end()) {
768 m_detectors[detectorName]->set(parameterName, value);
779 inline void setDetectors(
const std::vector<std::string> &detectorNames)
781 m_detectorNames.clear();
783 m_detectorNames = detectorNames;
784 initDetectors(m_detectorNames);
794 m_extractorNames.clear();
795 m_extractorNames.push_back(m_mapOfDescriptorNames[extractorType]);
796 m_extractors.clear();
797 initExtractor(m_mapOfDescriptorNames[extractorType]);
808 m_extractorNames.clear();
809 m_extractorNames.push_back(extractorName);
810 m_extractors.clear();
811 initExtractor(extractorName);
814 #if (VISP_HAVE_OPENCV_VERSION >= 0x020400 && VISP_HAVE_OPENCV_VERSION < 0x030000) 823 template <
typename T1,
typename T2,
typename T3>
824 inline void setExtractorParameter(
const T1 extractorName,
const T2 parameterName,
const T3 value)
826 if (m_extractors.find(extractorName) != m_extractors.end()) {
827 m_extractors[extractorName]->set(parameterName, value);
840 m_extractorNames.clear();
841 m_extractorNames = extractorNames;
842 m_extractors.clear();
843 initExtractors(m_extractorNames);
851 inline void setImageFormat(
const vpImageFormatType &imageFormat) { m_imageFormat = imageFormat; }
870 m_matcherName = matcherName;
871 initMatcher(m_matcherName);
891 m_filterType = filterType;
895 if (filterType == ratioDistanceThreshold || filterType == stdAndRatioDistanceThreshold) {
898 #if (VISP_HAVE_OPENCV_VERSION >= 0x020400 && VISP_HAVE_OPENCV_VERSION < 0x030000) 899 if (m_matcher != NULL && m_matcherName ==
"BruteForce") {
902 m_matcher->set(
"crossCheck",
false);
908 #if (VISP_HAVE_OPENCV_VERSION >= 0x020400 && VISP_HAVE_OPENCV_VERSION < 0x030000) 909 if (m_matcher != NULL && m_matcherName ==
"BruteForce") {
912 m_matcher->set(
"crossCheck", m_useBruteForceCrossCheck);
927 m_matchingFactorThreshold = factor;
940 if (ratio > 0.0 && (ratio < 1.0 || std::fabs(ratio - 1.0) < std::numeric_limits<double>::epsilon())) {
941 m_matchingRatioThreshold = ratio;
955 if (percentage > 0.0 &&
956 (percentage < 100.0 || std::fabs(percentage - 100.0) < std::numeric_limits<double>::epsilon())) {
957 m_ransacConsensusPercentage = percentage;
968 m_ransacFilterFlag = flag;
980 m_nbRansacIterations = nbIter;
993 m_ransacParallel = parallel;
1004 m_ransacParallelNbThreads = nthreads;
1016 if (reprojectionError > 0.0) {
1017 m_ransacReprojectionError = reprojectionError;
1020 "threshold must be positive " 1021 "as we deal with distance.");
1033 m_nbRansacMinInlierCount = minCount;
1047 if (threshold > 0.0) {
1048 m_ransacThreshold = threshold;
1063 #if (VISP_HAVE_OPENCV_VERSION >= 0x020400 && VISP_HAVE_OPENCV_VERSION < 0x030000) 1070 inline void setUseBruteForceCrossCheck(
const bool useCrossCheck)
1074 if (m_matcher != NULL && !m_useKnn && m_matcherName ==
"BruteForce") {
1075 m_matcher->set(
"crossCheck", useCrossCheck);
1076 }
else if (m_matcher != NULL && m_useKnn && m_matcherName ==
"BruteForce") {
1077 std::cout <<
"Warning, you try to set the crossCheck parameter with a " 1078 "BruteForce matcher but knn is enabled";
1079 std::cout <<
" (the filtering method uses a ratio constraint)" << std::endl;
1092 m_useMatchTrainToQuery = useMatchTrainToQuery;
1124 bool m_computeCovariance;
1128 int m_currentImageId;
1133 double m_detectionScore;
1136 double m_detectionThreshold;
1138 double m_detectionTime;
1140 std::vector<std::string> m_detectorNames;
1144 std::map<std::string, cv::Ptr<cv::FeatureDetector> > m_detectors;
1146 double m_extractionTime;
1148 std::vector<std::string> m_extractorNames;
1152 std::map<std::string, cv::Ptr<cv::DescriptorExtractor> > m_extractors;
1154 std::vector<cv::DMatch> m_filteredMatches;
1158 vpImageFormatType m_imageFormat;
1161 std::vector<std::vector<cv::DMatch> > m_knnMatches;
1163 std::map<vpFeatureDescriptorType, std::string> m_mapOfDescriptorNames;
1165 std::map<vpFeatureDetectorType, std::string> m_mapOfDetectorNames;
1168 std::map<int, int> m_mapOfImageId;
1171 std::map<int, vpImage<unsigned char> > m_mapOfImages;
1174 cv::Ptr<cv::DescriptorMatcher> m_matcher;
1176 std::string m_matcherName;
1178 std::vector<cv::DMatch> m_matches;
1180 double m_matchingFactorThreshold;
1182 double m_matchingRatioThreshold;
1184 double m_matchingTime;
1186 std::vector<std::pair<cv::KeyPoint, cv::Point3f> > m_matchRansacKeyPointsToPoints;
1188 int m_nbRansacIterations;
1190 int m_nbRansacMinInlierCount;
1193 std::vector<cv::Point3f> m_objectFilteredPoints;
1198 cv::Mat m_queryDescriptors;
1200 std::vector<cv::KeyPoint> m_queryFilteredKeyPoints;
1202 std::vector<cv::KeyPoint> m_queryKeyPoints;
1205 double m_ransacConsensusPercentage;
1209 std::vector<vpImagePoint> m_ransacInliers;
1211 std::vector<vpImagePoint> m_ransacOutliers;
1213 bool m_ransacParallel;
1215 unsigned int m_ransacParallelNbThreads;
1218 double m_ransacReprojectionError;
1221 double m_ransacThreshold;
1225 cv::Mat m_trainDescriptors;
1227 std::vector<cv::KeyPoint> m_trainKeyPoints;
1230 std::vector<cv::Point3f> m_trainPoints;
1233 std::vector<vpPoint> m_trainVpPoints;
1236 bool m_useAffineDetection;
1237 #if (VISP_HAVE_OPENCV_VERSION >= 0x020400 && VISP_HAVE_OPENCV_VERSION < 0x030000) 1238 bool m_useBruteForceCrossCheck;
1243 bool m_useConsensusPercentage;
1252 bool m_useMatchTrainToQuery;
1254 bool m_useRansacVVS;
1257 bool m_useSingleMatchFilter;
1259 void affineSkew(
double tilt,
double phi, cv::Mat &img, cv::Mat &mask, cv::Mat &Ai);
1261 double computePoseEstimationError(
const std::vector<std::pair<cv::KeyPoint, cv::Point3f> > &matchKeyPoints,
1264 void filterMatches();
1267 void initDetector(
const std::string &detectorNames);
1268 void initDetectors(
const std::vector<std::string> &detectorNames);
1270 void initExtractor(
const std::string &extractorName);
1271 void initExtractors(
const std::vector<std::string> &extractorNames);
1273 void initFeatureNames();
1275 inline size_t myKeypointHash(
const cv::KeyPoint &kp)
1277 size_t _Val = 2166136261U, scale = 16777619U;
1280 _Val = (scale * _Val) ^ u.u;
1282 _Val = (scale * _Val) ^ u.u;
1284 _Val = (scale * _Val) ^ u.u;
1290 _Val = (scale * _Val) ^ u.u;
1291 _Val = (scale * _Val) ^ ((
size_t)kp.octave);
1292 _Val = (scale * _Val) ^ ((
size_t)kp.class_id);
1296 #if (VISP_HAVE_OPENCV_VERSION >= 0x030000) 1302 class PyramidAdaptedFeatureDetector :
public cv::FeatureDetector
1306 PyramidAdaptedFeatureDetector(
const cv::Ptr<cv::FeatureDetector> &detector,
int maxLevel = 2);
1309 virtual bool empty()
const;
1312 virtual void detect(cv::InputArray image, CV_OUT std::vector<cv::KeyPoint> &keypoints,
1313 cv::InputArray mask = cv::noArray());
1314 virtual void detectImpl(
const cv::Mat &image, std::vector<cv::KeyPoint> &keypoints,
1315 const cv::Mat &mask = cv::Mat())
const;
1317 cv::Ptr<cv::FeatureDetector> detector;
1327 class KeyPointsFilter
1330 KeyPointsFilter() {}
1335 static void runByImageBorder(std::vector<cv::KeyPoint> &keypoints, cv::Size imageSize,
int borderSize);
1339 static void runByKeypointSize(std::vector<cv::KeyPoint> &keypoints,
float minSize,
float maxSize = FLT_MAX);
1343 static void runByPixelsMask(std::vector<cv::KeyPoint> &keypoints,
const cv::Mat &mask);
1347 static void removeDuplicated(std::vector<cv::KeyPoint> &keypoints);
1353 static void retainBest(std::vector<cv::KeyPoint> &keypoints,
int npoints);
Used to indicate that a value is not in the allowed range.
Implementation of a matrix and operations on matrices.
void setRansacIteration(const int nbIter)
class that defines what is a Keypoint. This class provides all the basic elements to implement classe...
void setUseRansacVVS(const bool ransacVVS)
Implementation of an homogeneous matrix and operations on such kind of matrices.
std::vector< std::pair< cv::KeyPoint, cv::KeyPoint > > getMatchQueryToTrainKeyPoints() const
void setRansacThreshold(const double threshold)
void setExtractor(const std::string &extractorName)
void setUseSingleMatchFilter(const bool singleMatchFilter)
Class to define colors available for display functionnalities.
std::map< vpFeatureDetectorType, std::string > getDetectorNames() const
error that can be emited by ViSP classes.
void setDetectors(const std::vector< std::string > &detectorNames)
static const vpColor green
cv::Ptr< cv::DescriptorExtractor > getExtractor(const vpFeatureDescriptorType &type) const
Class that defines what is a point.
cv::Mat getQueryDescriptors() const
void setExtractors(const std::vector< std::string > &extractorNames)
void setMatcher(const std::string &matcherName)
void setUseMatchTrainToQuery(const bool useMatchTrainToQuery)
cv::Ptr< cv::DescriptorMatcher > getMatcher() const
void setRansacFilterFlag(const vpPose::RANSAC_FILTER_FLAGS &flag)
virtual unsigned int buildReference(const vpImage< unsigned char > &I)=0
double getDetectionTime() const
void setRansacParallel(const bool parallel)
Generic class defining intrinsic camera parameters.
void setDetector(const vpFeatureDetectorType &detectorType)
double getMatchingTime() const
void setDetectionMethod(const vpDetectionMethodType &method)
unsigned int getNbImages() const
cv::Ptr< cv::FeatureDetector > getDetector(const std::string &name) const
void setRansacParallelNbThreads(const unsigned int nthreads)
void setRansacMinInlierCount(const int minCount)
vpMatrix getCovarianceMatrix() const
void setImageFormat(const vpImageFormatType &imageFormat)
virtual void display(const vpImage< unsigned char > &Iref, const vpImage< unsigned char > &Icurrent, unsigned int size=3)=0
void setRansacConsensusPercentage(const double percentage)
virtual unsigned int matchPoint(const vpImage< unsigned char > &I)=0
vpImageFormatType getImageFormat() const
void setUseAffineDetection(const bool useAffine)
std::map< vpFeatureDescriptorType, std::string > getExtractorNames() const
Class that allows keypoints detection (and descriptors extraction) and matching thanks to OpenCV libr...
std::vector< vpImagePoint > getRansacOutliers() const
cv::Mat getTrainDescriptors() const
double getExtractionTime() const
double getPoseTime() const
void setDetector(const std::string &detectorName)
Defines a rectangle in the plane.
cv::Ptr< cv::DescriptorExtractor > getExtractor(const std::string &name) const
void setUseRansacConsensusPercentage(const bool usePercentage)
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
std::vector< vpImagePoint > getRansacInliers() const
void setFilterMatchingType(const vpFilterMatchingType &filterType)
void setMatchingFactorThreshold(const double factor)
cv::Ptr< cv::FeatureDetector > getDetector(const vpFeatureDetectorType &type) const
void setExtractor(const vpFeatureDescriptorType &extractorType)
std::vector< cv::DMatch > getMatches() const
void setRansacReprojectionError(const double reprojectionError)
void setMatchingRatioThreshold(const double ratio)
void setCovarianceComputation(const bool &flag)