Visual Servoing Platform  version 3.2.0 under development (2019-01-22)
servoViper650FourPoints2DCamVelocityInteractionCurrent-SR300.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See http://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * tests the control law
33  * eye-in-hand control
34  * velocity computed in the camera frame
35  *
36  * Authors:
37  * Fabien Spindler
38  *
39  *****************************************************************************/
59 #include <fstream>
60 #include <iostream>
61 #include <sstream>
62 #include <stdio.h>
63 #include <stdlib.h>
64 
65 #include <visp3/core/vpConfig.h>
66 
67 #if defined(VISP_HAVE_VIPER650) && defined(VISP_HAVE_REALSENSE) && defined(VISP_HAVE_X11)
68 
69 #include <visp3/blob/vpDot2.h>
70 #include <visp3/core/vpHomogeneousMatrix.h>
71 #include <visp3/core/vpIoTools.h>
72 #include <visp3/core/vpPoint.h>
73 #include <visp3/gui/vpDisplayX.h>
74 #include <visp3/robot/vpRobotViper650.h>
75 #include <visp3/sensor/vpRealSense.h>
76 #include <visp3/vision/vpPose.h>
77 #include <visp3/visual_features/vpFeatureBuilder.h>
78 #include <visp3/visual_features/vpFeaturePoint.h>
79 #include <visp3/vs/vpServo.h>
80 #include <visp3/vs/vpServoDisplay.h>
81 
82 #define L 0.05 // to deal with a 10cm by 10cm square
83 
102 void compute_pose(std::vector<vpPoint> &point, std::vector<vpDot2> &dot, vpCameraParameters cam,
103  vpHomogeneousMatrix &cMo, bool init)
104 {
105  vpHomogeneousMatrix cMo_dementhon; // computed pose with dementhon method
106  vpHomogeneousMatrix cMo_lagrange; // computed pose with lagrange method
107  vpPose pose;
108 
109  for (size_t i = 0; i < point.size(); i++) {
110 
111  double x = 0, y = 0;
112  vpImagePoint cog = dot[i].getCog();
114  y); // pixel to meter conversion
115  point[i].set_x(x); // projection perspective p
116  point[i].set_y(y);
117  pose.addPoint(point[i]);
118  }
119 
120  if (init == true) {
121  pose.computePose(vpPose::DEMENTHON, cMo_dementhon);
122  // Compute and return the residual expressed in meter for the pose matrix
123  double residual_dementhon = pose.computeResidual(cMo_dementhon);
124  pose.computePose(vpPose::LAGRANGE, cMo_lagrange);
125  double residual_lagrange = pose.computeResidual(cMo_lagrange);
126 
127  // Select the best pose to initialize the lowe pose computation
128  if (residual_lagrange < residual_dementhon)
129  cMo = cMo_lagrange;
130  else
131  cMo = cMo_dementhon;
132  }
133 
134  pose.computePose(vpPose::LOWE, cMo);
135 }
136 
137 int main()
138 {
139  // Log file creation in /tmp/$USERNAME/log.dat
140  // This file contains by line:
141  // - the 6 computed camera velocities (m/s, rad/s) to achieve the task
142  // - the 6 mesured joint velocities (m/s, rad/s)
143  // - the 6 mesured joint positions (m, rad)
144  // - the 8 values of s - s*
145  std::string username;
146  // Get the user login name
147  vpIoTools::getUserName(username);
148 
149  // Create a log filename to save velocities...
150  std::string logdirname;
151  logdirname = "/tmp/" + username;
152 
153  // Test if the output path exist. If no try to create it
154  if (vpIoTools::checkDirectory(logdirname) == false) {
155  try {
156  // Create the dirname
157  vpIoTools::makeDirectory(logdirname);
158  } catch (...) {
159  std::cerr << std::endl << "ERROR:" << std::endl;
160  std::cerr << " Cannot create " << logdirname << std::endl;
161  return (-1);
162  }
163  }
164  std::string logfilename;
165  logfilename = logdirname + "/log.dat";
166 
167  // Open the log file name
168  std::ofstream flog(logfilename.c_str());
169 
170  try {
171  vpRobotViper650 robot;
172 
173  // Load the end-effector to camera frame transformation from SR300-eMc.cnf
174  // file
175  robot.init(vpRobotViper650::TOOL_CUSTOM, "./SR300-eMc.cnf");
177  robot.get_eMc(eMc);
178  std::cout << "Camera extrinsic parameters (eMc): \n" << eMc << std::endl;
179 
180  vpServo task;
181 
183 
184  vpRealSense g;
185  // Enable the RealSense device to acquire only color images with size
186  // 640x480
187  g.setEnableStream(rs::stream::color, true);
188  g.setEnableStream(rs::stream::depth, false);
189  g.setEnableStream(rs::stream::infrared, false);
190  g.setEnableStream(rs::stream::infrared2, false);
191  g.setStreamSettings(rs::stream::color, vpRealSense::vpRsStreamParams(640, 480, rs::format::rgba8, 30));
192  g.open();
193 
194  // Update camera parameters
195  vpCameraParameters cam =
197  std::cout << "Camera intrinsic parameters: \n" << cam << std::endl;
198 
199  g.acquire(I);
200 
201  vpDisplayX display(I, 100, 100, "Current image");
203  vpDisplay::flush(I);
204 
205  std::vector<vpDot2> dot(4);
206 
207  std::cout << "Click on the 4 dots clockwise starting from upper/left dot..." << std::endl;
208 
209  for (size_t i = 0; i < dot.size(); i++) {
210  dot[i].setGraphics(true);
211  dot[i].initTracking(I);
212  vpImagePoint cog = dot[i].getCog();
214  vpDisplay::flush(I);
215  }
216 
217  // Sets the current position of the visual feature
218  vpFeaturePoint p[4];
219  for (size_t i = 0; i < dot.size(); i++)
220  vpFeatureBuilder::create(p[i], cam, dot[i]); // retrieve x,y of the vpFeaturePoint structure
221 
222  // Set the position of the square target in a frame which origin is
223  // centered in the middle of the square
224  std::vector<vpPoint> point(4);
225  point[0].setWorldCoordinates(-L, -L, 0);
226  point[1].setWorldCoordinates(L, -L, 0);
227  point[2].setWorldCoordinates(L, L, 0);
228  point[3].setWorldCoordinates(-L, L, 0);
229 
230  // Compute target initial pose
232  compute_pose(point, dot, cam, cMo, true);
233  std::cout << "Initial camera pose (cMo): \n" << cMo << std::endl;
234 
235  // Initialise a desired pose to compute s*, the desired 2D point features
236  vpHomogeneousMatrix cMo_d(vpTranslationVector(0, 0, 0.5), // tz = 0.5 meter
237  vpRotationMatrix()); // no rotation
238 
239  // Sets the desired position of the 2D visual feature
240  vpFeaturePoint pd[4];
241  // Compute the desired position of the features from the desired pose
242  for (int i = 0; i < 4; i++) {
243  vpColVector cP, p;
244  point[i].changeFrame(cMo_d, cP);
245  point[i].projection(cP, p);
246 
247  pd[i].set_x(p[0]);
248  pd[i].set_y(p[1]);
249  pd[i].set_Z(cP[2]);
250  }
251 
252  // We want to see a point on a point
253  for (size_t i = 0; i < dot.size(); i++)
254  task.addFeature(p[i], pd[i]);
255 
256  // Set the proportional gain
257  task.setLambda(0.3);
258 
259  // Define the task
260  // - we want an eye-in-hand control law
261  // - camera velocities are computed
264  task.print();
265 
266  // Initialise the velocity control of the robot
268 
269  std::cout << "\nHit CTRL-C or click in the image to stop the loop...\n" << std::flush;
270  for (;;) {
271  // Acquire a new image from the camera
272  g.acquire(I);
273 
274  // Display this image
276 
277  try {
278  // For each point...
279  for (size_t i = 0; i < dot.size(); i++) {
280  // Achieve the tracking of the dot in the image
281  dot[i].track(I);
282  // Display a green cross at the center of gravity position in the
283  // image
284  vpImagePoint cog = dot[i].getCog();
286  }
287  } catch (...) {
288  std::cout << "Error detected while tracking visual features.." << std::endl;
289  break;
290  }
291 
292  // During the servo, we compute the pose using a non linear method. For
293  // the initial pose used in the non linear minimisation we use the pose
294  // computed at the previous iteration.
295  compute_pose(point, dot, cam, cMo, false);
296 
297  for (size_t i = 0; i < dot.size(); i++) {
298  // Update the point feature from the dot location
299  vpFeatureBuilder::create(p[i], cam, dot[i]);
300  // Set the feature Z coordinate from the pose
301  vpColVector cP;
302  point[i].changeFrame(cMo, cP);
303 
304  p[i].set_Z(cP[2]);
305  }
306 
307  // Compute the visual servoing skew vector
308  vpColVector v = task.computeControlLaw();
309 
310  // Display the current and desired feature points in the image display
311  vpServoDisplay::display(task, cam, I);
312 
313  // Apply the computed joint velocities to the robot
315 
316  // Save velocities applied to the robot in the log file
317  // v[0], v[1], v[2] correspond to camera translation velocities in m/s
318  // v[3], v[4], v[5] correspond to camera rotation velocities in rad/s
319  flog << v[0] << " " << v[1] << " " << v[2] << " " << v[3] << " " << v[4] << " " << v[5] << " ";
320 
321  // Get the measured joint velocities of the robot
322  vpColVector qvel;
324  // Save measured joint velocities of the robot in the log file:
325  // - qvel[0], qvel[1], qvel[2] correspond to measured joint translation
326  // velocities in m/s
327  // - qvel[3], qvel[4], qvel[5] correspond to measured joint rotation
328  // velocities in rad/s
329  flog << qvel[0] << " " << qvel[1] << " " << qvel[2] << " " << qvel[3] << " " << qvel[4] << " " << qvel[5] << " ";
330 
331  // Get the measured joint positions of the robot
332  vpColVector q;
334  // Save measured joint positions of the robot in the log file
335  // - q[0], q[1], q[2] correspond to measured joint translation
336  // positions in m
337  // - q[3], q[4], q[5] correspond to measured joint rotation
338  // positions in rad
339  flog << q[0] << " " << q[1] << " " << q[2] << " " << q[3] << " " << q[4] << " " << q[5] << " ";
340 
341  // Save feature error (s-s*) for the 4 feature points. For each feature
342  // point, we have 2 errors (along x and y axis). This error is
343  // expressed in meters in the camera frame
344  flog << task.getError() << std::endl;
345 
346  vpDisplay::displayText(I, 10, 10, "Click to quit...", vpColor::red);
347  if (vpDisplay::getClick(I, false))
348  break;
349 
350  // Flush the display
351  vpDisplay::flush(I);
352 
353  // std::cout << "\t\t || s - s* || = " << ( task.getError()
354  // ).sumSquare() << std::endl;
355  }
356 
357  std::cout << "Display task information: " << std::endl;
358  task.print();
359  task.kill();
360  flog.close(); // Close the log file
361  return EXIT_SUCCESS;
362  } catch (const vpException &e) {
363  flog.close(); // Close the log file
364  std::cout << "Catch an exception: " << e.getMessage() << std::endl;
365  return EXIT_FAILURE;
366  }
367 }
368 
369 #else
370 int main()
371 {
372  std::cout << "You do not have an Viper 650 robot connected to your computer..." << std::endl;
373  return EXIT_SUCCESS;
374 }
375 #endif
bool computePose(vpPoseMethodType method, vpHomogeneousMatrix &cMo, bool(*func)(const vpHomogeneousMatrix &)=NULL)
Definition: vpPose.cpp:362
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &velocity)
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
static bool checkDirectory(const char *dirname)
Definition: vpIoTools.cpp:467
void getVelocity(const vpRobot::vpControlFrameType frame, vpColVector &velocity)
Implementation of an homogeneous matrix and operations on such kind of matrices.
Control of Irisa&#39;s Viper S650 robot named Viper650.
void get_eMc(vpHomogeneousMatrix &eMc) const
Definition: vpViper.cpp:894
static void displayText(const vpImage< unsigned char > &I, const vpImagePoint &ip, const std::string &s, const vpColor &color)
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
Definition: vpDisplayX.h:151
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, const unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:497
error that can be emited by ViSP classes.
Definition: vpException.h:71
void acquire(std::vector< vpColVector > &pointcloud)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
static void convertPoint(const vpCameraParameters &cam, const double &u, const double &v, double &x, double &y)
static const vpColor green
Definition: vpColor.h:183
static void flush(const vpImage< unsigned char > &I)
void set_y(const double y)
static const vpColor red
Definition: vpColor.h:180
Implementation of a rotation matrix and operations on such kind of matrices.
void set_x(const double x)
static void makeDirectory(const char *dirname)
Definition: vpIoTools.cpp:597
void kill()
Definition: vpServo.cpp:192
vpRobot::vpRobotStateType setRobotState(vpRobot::vpRobotStateType newState)
Initialize the velocity controller.
Definition: vpRobot.h:67
vpColVector getError() const
Definition: vpServo.h:282
vpColVector computeControlLaw()
Definition: vpServo.cpp:935
static void display(const vpImage< unsigned char > &I)
Class used for pose computation from N points (pose from point only). Some of the algorithms implemen...
Definition: vpPose.h:78
Generic class defining intrinsic camera parameters.
void setLambda(double c)
Definition: vpServo.h:406
static std::string getUserName()
Definition: vpIoTools.cpp:298
const char * getMessage(void) const
Definition: vpException.cpp:90
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:574
void setStreamSettings(const rs::stream &stream, const rs::preset &preset)
static void displayCross(const vpImage< unsigned char > &I, const vpImagePoint &ip, unsigned int size, const vpColor &color, unsigned int thickness=1)
void setEnableStream(const rs::stream &stream, const bool status)
Implementation of column vector and the associated operations.
Definition: vpColVector.h:72
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:313
void set_Z(const double Z)
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:88
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
void addPoint(const vpPoint &P)
Definition: vpPose.cpp:137
vpCameraParameters getCameraParameters(const rs::stream &stream, vpCameraParameters::vpCameraParametersProjType type=vpCameraParameters::perspectiveProjWithDistortion) const
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:223
Class that consider the case of a translation vector.
static void display(const vpServo &s, const vpCameraParameters &cam, const vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)
double computeResidual(const vpHomogeneousMatrix &cMo) const
Compute and return the sum of squared residuals expressed in meter^2 for the pose matrix cMo...
Definition: vpPose.cpp:324
static const vpColor blue
Definition: vpColor.h:186
void getPosition(const vpRobot::vpControlFrameType frame, vpColVector &position)