Visual Servoing Platform  version 3.2.0 under development (2019-01-22)
servoSimuThetaUCamVelocity.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See http://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * Simulation of a visual servoing using theta U visual features.
33  * tests the control law
34  * eye-in-hand control
35  * velocity computed in the camera frame
36  * using theta U visual feature
37  *
38  * Authors:
39  * Eric Marchand
40  * Fabien Spindler
41  *
42  *****************************************************************************/
43 
52 #include <stdio.h>
53 #include <stdlib.h>
54 
55 #include <visp3/core/vpHomogeneousMatrix.h>
56 #include <visp3/core/vpMath.h>
57 #include <visp3/io/vpParseArgv.h>
58 #include <visp3/robot/vpSimulatorCamera.h>
59 #include <visp3/visual_features/vpFeatureThetaU.h>
60 #include <visp3/visual_features/vpFeatureTranslation.h>
61 #include <visp3/vs/vpServo.h>
62 
63 // List of allowed command line options
64 #define GETOPTARGS "h"
65 void usage(const char *name, const char *badparam);
66 bool getOptions(int argc, const char **argv);
75 void usage(const char *name, const char *badparam)
76 {
77  fprintf(stdout, "\n\
78 Simulation of avisual servoing using theta U visual feature:\n\
79 - eye-in-hand control law,\n\
80 - velocity computed in the camera frame,\n\
81 - without display.\n\
82  \n\
83 SYNOPSIS\n\
84  %s [-h]\n", name);
85 
86  fprintf(stdout, "\n\
87 OPTIONS: Default\n\
88  \n\
89  -h\n\
90  Print the help.\n");
91 
92  if (badparam)
93  fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
94 }
95 
106 bool getOptions(int argc, const char **argv)
107 {
108  const char *optarg_;
109  int c;
110  while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
111 
112  switch (c) {
113  case 'h':
114  usage(argv[0], NULL);
115  return false;
116  break;
117 
118  default:
119  usage(argv[0], optarg_);
120  return false;
121  break;
122  }
123  }
124 
125  if ((c == 1) || (c == -1)) {
126  // standalone param or error
127  usage(argv[0], NULL);
128  std::cerr << "ERROR: " << std::endl;
129  std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
130  return false;
131  }
132 
133  return true;
134 }
135 
136 int main(int argc, const char **argv)
137 {
138  try {
139  // Read the command line options
140  if (getOptions(argc, argv) == false) {
141  exit(-1);
142  }
143 
144  vpServo task;
145  vpSimulatorCamera robot;
146 
147  std::cout << std::endl;
148  std::cout << "-------------------------------------------------------" << std::endl;
149  std::cout << " Test program for vpServo " << std::endl;
150  std::cout << " Eye-in-hand task control, velocity computed in the camera frame" << std::endl;
151  std::cout << " Simulation " << std::endl;
152  std::cout << " task : servo using theta U visual feature " << std::endl;
153  std::cout << "-------------------------------------------------------" << std::endl;
154  std::cout << std::endl;
155 
156  // sets the initial camera location
157  vpPoseVector c_r_o(0.1, 0.2, 2, vpMath::rad(20), vpMath::rad(10), vpMath::rad(50));
158 
159  vpHomogeneousMatrix cMo(c_r_o);
160  // Compute the position of the object in the world frame
161  vpHomogeneousMatrix wMc, wMo;
162  robot.getPosition(wMc);
163  wMo = wMc * cMo;
164 
165  // sets the desired camera location
166  vpPoseVector cd_r_o(0, 0, 1, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
167  vpHomogeneousMatrix cdMo(cd_r_o);
168 
169  // compute the rotation that the camera has to realize
170  vpHomogeneousMatrix cdMc;
171  cdMc = cdMo * cMo.inverse();
173  tu.buildFrom(cdMc);
174 
175  // define the task
176  // - we want an eye-in-hand control law
177  // - robot is controlled in the camera frame
180 
181  task.addFeature(tu);
182 
183  // - set the gain
184  task.setLambda(1);
185 
186  // Display task information
187  task.print();
188 
189  unsigned int iter = 0;
190  // loop
191  while (iter++ < 200) {
192  std::cout << "---------------------------------------------" << iter << std::endl;
193  vpColVector v;
194 
195  // get the robot position
196  robot.getPosition(wMc);
197  // Compute the position of the camera wrt the object frame
198  cMo = wMc.inverse() * wMo;
199 
200  // new rotation to achieve
201  cdMc = cdMo * cMo.inverse();
202  tu.buildFrom(cdMc);
203 
204  // compute the control law
205  v = task.computeControlLaw();
206 
207  // send the camera velocity to the controller
209 
210  std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
211  ;
212  }
213 
214  // Display task information
215  task.print();
216  task.kill();
217  return EXIT_SUCCESS;
218  } catch (const vpException &e) {
219  std::cout << "Catch a ViSP exception: " << e << std::endl;
220  return EXIT_FAILURE;
221  }
222 }
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel)
Implementation of an homogeneous matrix and operations on such kind of matrices.
Class that defines the simplest robot: a free flying camera.
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, const unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:497
error that can be emited by ViSP classes.
Definition: vpException.h:71
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:69
void kill()
Definition: vpServo.cpp:192
vpColVector getError() const
Definition: vpServo.h:282
vpColVector computeControlLaw()
Definition: vpServo.cpp:935
void setLambda(double c)
Definition: vpServo.h:406
vpHomogeneousMatrix getPosition() const
void buildFrom(const vpTranslationVector &t, const vpRotationMatrix &R)
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:574
static double rad(double deg)
Definition: vpMath.h:102
Implementation of column vector and the associated operations.
Definition: vpColVector.h:72
Implementation of a pose vector and operations on poses.
Definition: vpPoseVector.h:92
vpHomogeneousMatrix inverse() const
Class that defines a 3D visual feature from a axis/angle parametrization that represent the rotatio...
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:313
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:223